Evaluate Definite integral using substitution

G

Guest

Guest
Evaluate Definite Integral Using Substitution (round answer to the nearest thousandth)

4
/ 2x+6/x^2+6x+3
1

Where do you being. :(
 
I'm sorry, but your formatting is ambiguous. Please review the information on formatting (available through the links in the pull-down "Forum Help" menu at the very top of the page), and reply with clarifications. LaTeX or grouping symbols would be very helpful.

Thank you.

Eliz.
 
Hello, amy2310!

Evaluate using substitution (round answer to the nearest thousandth)

. . . \(\displaystyle \L \int_1\,^4\frac{2x\,+\,6}{x^2\,+\,6x\,+\,3}\,dx\)
Let \(\displaystyle u\,=\,x^2\,+\,6x\,+\,3\;\;\Rightarrow\;\;du\,=\,(2x\,+\,6)dx\;\;\Rightarrow\;\;dx\,=\,\frac{du}{2x+6}\)

Substitute: .\(\displaystyle \L \int\frac{2x\,+\,6}{u}\cdot\frac{du}{2x\,+\,6} \;=\;\int\frac{du}{u}\;=\;\ln|u|\)

Back-substsitute: .\(\displaystyle \L\ln|2x\,+\,6|\)

Evaluate: .\(\displaystyle \L\ln|2x\,+\,6|\,\bigg]^4_1\)
 
Top