Evaluate definite Integral 1 + sin2x, 0 to pi/2

val1

New member
Joined
Oct 17, 2005
Messages
40
Hi
Can you please check the working out of this solution?

Evaluate the integral and leave pi in your answer.

\(\displaystyle \L\pi \int\limits_0^{{\textstyle{\pi \over 2}}} {(1 + \sin 2x)dx}\)



\(\displaystyle \L = \pi \left[ {(x - \frac{1}{2}\cos 2x)} \right]_0^{{\textstyle{\pi \over 2}}}\)

\(\displaystyle \L = \pi \left[ {\frac{\pi }{2} - \frac{1}{2}\cos \pi } \right] - \pi \left[ {0 - \cos 0} \right]\)

\(\displaystyle \L = \pi \left[ {\frac{\pi }{2} + \frac{1}{2}} \right] - \pi \left[ { - 1} \right] = \pi (\frac{\pi }{2} + \frac{3}{2})\)


I think there is a mistake above, but I'm not sure where. Please help.
Thanks
 
val1 said:
Hi
Can you please check the working out of this solution?

Evaluate the integral and leave pi in your answer.

\(\displaystyle \L\pi \int\limits_0^{{\textstyle{\pi \over 2}}} {(1 + \sin 2x)dx}\)



\(\displaystyle \L = \pi \left[ {(x - \frac{1}{2}\cos 2x)} \right]_0^{{\textstyle{\pi \over 2}}}\)

\(\displaystyle \L = \pi \left[ {\frac{\pi }{2} - \frac{1}{2}\cos \pi } \right] - \pi \left[ {0 - \cos 0} \right]\)
I believe your problem is in the cos(0). cos(0) is 1. You then have 1/2cos(0)=1/2. See it?.

\(\displaystyle \L = \pi \left[ {\frac{\pi }{2} + \frac{1}{2}} \right] - \pi \left[\underbrace{{ - 1} }\right] = \pi (\frac{\pi }{2} + \frac{3}{2})\)

\(\displaystyle {\pi}\left[\frac{\pi}{2}+\frac{1}{2}\right]-{\pi}[\frac{-1}{2}]=

\frac{{\pi}({\pi}+2)}{2}\)


I think there is a mistake above, but I'm not sure where. Please help.
Thanks
 
Top