Hi
Can you please check the working out of this solution?
Evaluate the integral and leave pi in your answer.
\(\displaystyle \L\pi \int\limits_0^{{\textstyle{\pi \over 2}}} {(1 + \sin 2x)dx}\)
\(\displaystyle \L = \pi \left[ {(x - \frac{1}{2}\cos 2x)} \right]_0^{{\textstyle{\pi \over 2}}}\)
\(\displaystyle \L = \pi \left[ {\frac{\pi }{2} - \frac{1}{2}\cos \pi } \right] - \pi \left[ {0 - \cos 0} \right]\)
\(\displaystyle \L = \pi \left[ {\frac{\pi }{2} + \frac{1}{2}} \right] - \pi \left[ { - 1} \right] = \pi (\frac{\pi }{2} + \frac{3}{2})\)
I think there is a mistake above, but I'm not sure where. Please help.
Thanks
Can you please check the working out of this solution?
Evaluate the integral and leave pi in your answer.
\(\displaystyle \L\pi \int\limits_0^{{\textstyle{\pi \over 2}}} {(1 + \sin 2x)dx}\)
\(\displaystyle \L = \pi \left[ {(x - \frac{1}{2}\cos 2x)} \right]_0^{{\textstyle{\pi \over 2}}}\)
\(\displaystyle \L = \pi \left[ {\frac{\pi }{2} - \frac{1}{2}\cos \pi } \right] - \pi \left[ {0 - \cos 0} \right]\)
\(\displaystyle \L = \pi \left[ {\frac{\pi }{2} + \frac{1}{2}} \right] - \pi \left[ { - 1} \right] = \pi (\frac{\pi }{2} + \frac{3}{2})\)
I think there is a mistake above, but I'm not sure where. Please help.
Thanks