Find at least 5 different numbers n with Φ(n)=160. Φ(n)= #{a: 1≤ a ≥m and gcd(a,m)=1}
B bigp0ppa1046 New member Joined Jan 30, 2007 Messages 18 Feb 12, 2007 #1 Find at least 5 different numbers n with Φ(n)=160. Φ(n)= #{a: 1≤ a ≥m and gcd(a,m)=1}
S soroban Elite Member Joined Jan 28, 2005 Messages 5,586 Feb 13, 2007 #2 Hello, bigp0ppa1046! A rather tricky problem . . . Find at least 5 different numbers n\displaystyle nn with: ϕ(n) = 160\displaystyle \,\phi(n) \,=\,160ϕ(n)=160 Click to expand... For those unfamiliar with Euler's phi-function . . . ϕ(n)\displaystyle \phi(n)ϕ(n) is the number of positive integers less than n\displaystyle nn and relatively prime to n.\displaystyle n.n. . . 1\displaystyle 11 is included in the count. For example: ϕ(42) = 12\displaystyle \,\phi(42) \,=\,12ϕ(42)=12 . . 1, 5, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41\displaystyle 1,\,5,\,11,\,13,\,17,\,19,\,23,\,25,\,29,\,31,\,37,\,411,5,11,13,17,19,23,25,29,31,37,41 are relatively prime to 42.\displaystyle 42.42. Can't sleep? .Check out: ϕ(72) = 24, ϕ(120) = 32\displaystyle \,\phi(72)\,=\,24,\;\phi(120)\,=\,32ϕ(72)=24,ϕ(120)=32 Fortunately, there is a formula for ϕ(N).\displaystyle \phi(N).ϕ(N). Write the prime factorization of \(\displaystyle N:\; N\:=\_{_1}^{^a}\cdot p_{_2}^{^b}\cdot p_{_3}^{^c}\cdot p_{_4}^{^d}\,\cdots\) . . Then: ϕ(N) = p1a−1(p1 − 1) ⋅ p2b−1(p2 − 1) ⋅ p3c−1(p3 − 1) ⋯\displaystyle \:\phi(N)\;=\;p_1^{a-1}(p_1\,-\,1)\,\cdot\,p_2^{b-1}(p_2\,-\,1)\,\cdot\,p_3^{c-1}(p_3\,-\,1)\,\cdotsϕ(N)=p1a−1(p1−1)⋅p2b−1(p2−1)⋅p3c−1(p3−1)⋯ Each pair is the product of the prime to the one-less power times one less than the prime. For this problem, we must work backwards. We are given: ϕ(N) = 160\displaystyle \phi(N) \,=\,160ϕ(N)=160, and we must generate values of N.\displaystyle N.N. I found five values: \(\displaystyle \begin{array}{ccccc}1\cdot160 & \,=\, & 2^{^0}(2-1)\cdot161^{^0}(161-1) & \;\Rightarrow\; & 2^{^1}\cdot161^{^1} & \,=\, & 322 \\ 4\cdot40 & = &5^{^0}(5-1)\cdot41^{^0}(41-1) & \;\Rightarrow\; & 5^{^1}\cdot41^{^1} & = & 205 \\ 10\cdot16 & = & 11^{^0}(11-1)\cdot17^{^0}(17-1) & \;\Rightarrow\; & 11^{^1}\cdot17^{^1} & = & 187\\ 1\cdot4\cdot40 & = & 2{^^}0(2-1)\cdot5^{^0}(5-1)\cdot41^0(41-1) & \;\Rightarrow\; & 2^{^1}\cdot5^1\cdot41^{^1} & = & 410 \\ 1\cdot10\cdot16 & = & 2^{^0}(2-1)\cdot11^{^0}(11-1)\cdot17^0(17-1) & \;\Rightarrow\; & 2^{^1}\cdot11^{^1}\cdot17^1 & = & 374\end{array}\)
Hello, bigp0ppa1046! A rather tricky problem . . . Find at least 5 different numbers n\displaystyle nn with: ϕ(n) = 160\displaystyle \,\phi(n) \,=\,160ϕ(n)=160 Click to expand... For those unfamiliar with Euler's phi-function . . . ϕ(n)\displaystyle \phi(n)ϕ(n) is the number of positive integers less than n\displaystyle nn and relatively prime to n.\displaystyle n.n. . . 1\displaystyle 11 is included in the count. For example: ϕ(42) = 12\displaystyle \,\phi(42) \,=\,12ϕ(42)=12 . . 1, 5, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41\displaystyle 1,\,5,\,11,\,13,\,17,\,19,\,23,\,25,\,29,\,31,\,37,\,411,5,11,13,17,19,23,25,29,31,37,41 are relatively prime to 42.\displaystyle 42.42. Can't sleep? .Check out: ϕ(72) = 24, ϕ(120) = 32\displaystyle \,\phi(72)\,=\,24,\;\phi(120)\,=\,32ϕ(72)=24,ϕ(120)=32 Fortunately, there is a formula for ϕ(N).\displaystyle \phi(N).ϕ(N). Write the prime factorization of \(\displaystyle N:\; N\:=\_{_1}^{^a}\cdot p_{_2}^{^b}\cdot p_{_3}^{^c}\cdot p_{_4}^{^d}\,\cdots\) . . Then: ϕ(N) = p1a−1(p1 − 1) ⋅ p2b−1(p2 − 1) ⋅ p3c−1(p3 − 1) ⋯\displaystyle \:\phi(N)\;=\;p_1^{a-1}(p_1\,-\,1)\,\cdot\,p_2^{b-1}(p_2\,-\,1)\,\cdot\,p_3^{c-1}(p_3\,-\,1)\,\cdotsϕ(N)=p1a−1(p1−1)⋅p2b−1(p2−1)⋅p3c−1(p3−1)⋯ Each pair is the product of the prime to the one-less power times one less than the prime. For this problem, we must work backwards. We are given: ϕ(N) = 160\displaystyle \phi(N) \,=\,160ϕ(N)=160, and we must generate values of N.\displaystyle N.N. I found five values: \(\displaystyle \begin{array}{ccccc}1\cdot160 & \,=\, & 2^{^0}(2-1)\cdot161^{^0}(161-1) & \;\Rightarrow\; & 2^{^1}\cdot161^{^1} & \,=\, & 322 \\ 4\cdot40 & = &5^{^0}(5-1)\cdot41^{^0}(41-1) & \;\Rightarrow\; & 5^{^1}\cdot41^{^1} & = & 205 \\ 10\cdot16 & = & 11^{^0}(11-1)\cdot17^{^0}(17-1) & \;\Rightarrow\; & 11^{^1}\cdot17^{^1} & = & 187\\ 1\cdot4\cdot40 & = & 2{^^}0(2-1)\cdot5^{^0}(5-1)\cdot41^0(41-1) & \;\Rightarrow\; & 2^{^1}\cdot5^1\cdot41^{^1} & = & 410 \\ 1\cdot10\cdot16 & = & 2^{^0}(2-1)\cdot11^{^0}(11-1)\cdot17^0(17-1) & \;\Rightarrow\; & 2^{^1}\cdot11^{^1}\cdot17^1 & = & 374\end{array}\)