Euler

logistic_guy

Senior Member
Joined
Apr 17, 2024
Messages
1,607
Using Euler's relation, derive the following relationships:

(a) cosθ=12(ejθ+ejθ)\displaystyle \cos \theta = \frac{1}{2}(e^{j\theta} + e^{-j\theta})

(b) sinθ=12j(ejθejθ)\displaystyle \sin \theta = \frac{1}{2j}(e^{j\theta} - e^{-j\theta})

(c) cos2θ=12(1+cos2θ)\displaystyle \cos^2 \theta = \frac{1}{2}(1 + \cos 2\theta)

(d) sinθsinϕ=12cos(θϕ)12cos(θ+ϕ)\displaystyle \sin \theta \sin \phi = \frac{1}{2}\cos(\theta - \phi) - \frac{1}{2}\cos(\theta + \phi)

(e) sin(θ+ϕ)=sinθcosϕ+cosθsinϕ\displaystyle \sin(\theta + \phi) = \sin \theta \cos \phi + \cos \theta \sin \phi
 
Using Euler's relation, derive the following relationships:

(a) cosθ=12(ejθ+ejθ)\displaystyle \cos \theta = \frac{1}{2}(e^{j\theta} + e^{-j\theta})

(b) sinθ=12j(ejθejθ)\displaystyle \sin \theta = \frac{1}{2j}(e^{j\theta} - e^{-j\theta})

(c) cos2θ=12(1+cos2θ)\displaystyle \cos^2 \theta = \frac{1}{2}(1 + \cos 2\theta)

(d) sinθsinϕ=12cos(θϕ)12cos(θ+ϕ)\displaystyle \sin \theta \sin \phi = \frac{1}{2}\cos(\theta - \phi) - \frac{1}{2}\cos(\theta + \phi)

(e) sin(θ+ϕ)=sinθcosϕ+cosθsinϕ\displaystyle \sin(\theta + \phi) = \sin \theta \cos \phi + \cos \theta \sin \phi

show us your effort/s to solve this problem.
 
show us your effort/s to solve this problem.
👍

I will start with Euler's relation: ejθ=cosθ+jsinθ\displaystyle e^{j\theta} = \cos \theta + j\sin \theta.

(a)

ejθ+ejθ=cosθ+jsinθ+cosθjsinθ\displaystyle e^{j\theta} + e^{-j\theta} = \cos \theta + j\sin \theta + \cos \theta - j\sin \theta
ejθ+ejθ=2cosθ\displaystyle e^{j\theta} + e^{-j\theta} = 2\cos \theta
cosθ=12(ejθ+ejθ)\displaystyle \cos \theta = \frac{1}{2}\left(e^{j\theta} + e^{-j\theta}\right)

(b)

ejθejθ=cosθ+jsinθcosθ+jsinθ\displaystyle e^{j\theta} - e^{-j\theta} = \cos \theta + j\sin \theta - \cos \theta + j\sin \theta
ejθejθ=2jsinθ\displaystyle e^{j\theta} - e^{-j\theta} = 2j\sin \theta
sinθ=12j(ejθejθ)\displaystyle \sin \theta = \frac{1}{2j}\left(e^{j\theta} - e^{-j\theta}\right)

(c)

cos2θ=cosθcosθ=12(ejθ+ejθ)12(ejθ+ejθ)=14(ejθ+jθ+ejθjθ+ejθ+jθ+ejθjθ)\displaystyle \cos^2 \theta = \cos \theta \cos \theta = \frac{1}{2}\left(e^{j\theta} + e^{-j\theta}\right)\frac{1}{2}\left(e^{j\theta} + e^{-j\theta}\right) = \frac{1}{4}\left(e^{j\theta + j\theta} + e^{j\theta - j\theta} + e^{-j\theta + j\theta} + e^{-j\theta - j\theta}\right)
=14(e2jθ+2e0+e2jθ)=12[1+12(e2jθ+e2jθ)]=12(1+cos2θ)\displaystyle = \frac{1}{4}\left(e^{2j\theta} + 2e^{0} + e^{-2j\theta}\right) = \frac{1}{2}\left[1 + \frac{1}{2}\left(e^{2j\theta} + e^{-2j\theta}\right)\right] = \frac{1}{2}\left(1 + \cos 2\theta\right)

I will continue in the next post.
 
See, it is all about what can be used to prove something. The prerequisites are crucial.

Do you have any idea how to prove (c)-(e) by geometric means?
 
See, it is all about what can be used to prove something. The prerequisites are crucial.

Do you have any idea how to prove (c)-(e) by geometric means?
Thanks professor fresh_42 for being interested in my posts🙏

Let me try it for (e). Here is some sketch I made after a few tries:

geometry.png

BC=cosy\displaystyle \text{BC} = \cos y
BF=siny\displaystyle \text{BF} = \sin y
FG=cosx×BF=cosxsiny\displaystyle \text{FG} = \cos x \times \text{BF} = \cos x \sin y
AB=sinx×BC=sinxcosy\displaystyle \text{AB} = \sin x \times \text{BC} = \sin x \cos y
sin(x+y)=DF=DG +FG=AB +FG=sinxcosy+cosxsiny\displaystyle \sin(x + y) = \text{DF} = \text{DG} \ + \text{FG} = \text{AB} \ + \text{FG} = \sin x \cos y + \cos x \sin y
 
Let me try to prove (c) this time. I made this sketch:

geometry2.png

Let me first try to find the angles, n\displaystyle \angle n and y\displaystyle \angle y.

n=18090x=90x\displaystyle \angle n = 180^{\circ} - 90^{\circ} - x = 90^{\circ} - x.

n+n+y=180\displaystyle \angle n + \angle n + \angle y = 180^{\circ}

2n+y=180\displaystyle 2\angle n + \angle y = 180^{\circ}

2(90x)+y=180\displaystyle 2(90^{\circ} - x) + \angle y = 180^{\circ}

1802x+y=180\displaystyle 180^{\circ} - 2x + \angle y = 180^{\circ}

y=2x\displaystyle \angle y = 2x

EF=cosy=cos2x\displaystyle \text{EF} = \cos y = \cos 2x

ΔABCΔAFB\displaystyle \Delta \text{ABC} \sim \Delta AFB

This means ABAC=AFAB=1+EFAB\displaystyle \frac{\text{AB}}{\text{AC}} = \frac{AF}{AB} = \frac{1 + \text{EF}}{AB}

2cosx2=1+cos2x2cosx\displaystyle \frac{2\cos x}{2} = \frac{1 + \cos 2x}{2\cos x}

2cos2x=1+cos2x\displaystyle 2\cos^2 x = 1 + \cos 2x

cos2x=12(1+cos2x)\displaystyle \cos^2 x = \frac{1}{2}(1 + \cos 2x)
 
Last edited:
Top