I got an extra root in solving a problem about a minimum distance, and I'm not sure why.
Here's the problem:
Find the point on the x-axis from which the sum of the distances to (0, 4) and (4, 2) is a minimum.
Here's what I did:
Let x be the point on the x-axis, and let s be the sum of the distances. Then:
s = sqrt[(0 – x)[sup:30tulfvf]2[/sup:30tulfvf] + (4 – 0)[sup:30tulfvf]2[/sup:30tulfvf]] + sqrt(4 – x)[sup:30tulfvf]2[/sup:30tulfvf] + (2 – 0)[sup:30tulfvf]2[/sup:30tulfvf]] = sqrt[x[sup:30tulfvf]2[/sup:30tulfvf] + 16] + sqrt[16 – 8x + x[sup:30tulfvf]2[/sup:30tulfvf] + 4] = sqrt[x[sup:30tulfvf]2[/sup:30tulfvf] + 16] + sqrt[x[sup:30tulfvf]2[/sup:30tulfvf] – 8x + 20]. We want to find x when s is a minimum.
s' = 1/2 ? 1/sqrt[x[sup:30tulfvf]2[/sup:30tulfvf] + 16] ? 2x + 1/2 ? 1/sqrt[x[sup:30tulfvf]2[/sup:30tulfvf] – 8x + 20] ? (2x – 8) = x/sqrt[x[sup:30tulfvf]2[/sup:30tulfvf] + 16] + (x – 4)/sqrt[x[sup:30tulfvf]2[/sup:30tulfvf] – 8x + 20] ? 0
? x/sqrt[x[sup:30tulfvf]2[/sup:30tulfvf] + 16] = – (x – 4)/sqrt[x[sup:30tulfvf]2[/sup:30tulfvf] – 8x + 20]
? x ? sqrt[x[sup:30tulfvf]2[/sup:30tulfvf] – 8x + 20] = (– 1) ? (x – 4) ? sqrt[x[sup:30tulfvf]2[/sup:30tulfvf] + 16]
? x[sup:30tulfvf]2[/sup:30tulfvf] ? (x[sup:30tulfvf]2[/sup:30tulfvf] – 8x + 20) = (x – 4)[sup:30tulfvf]2[/sup:30tulfvf] ? (x[sup:30tulfvf]2[/sup:30tulfvf] + 16)
? x[sup:30tulfvf]4[/sup:30tulfvf] – 8x[sup:30tulfvf]3[/sup:30tulfvf] + 20x[sup:30tulfvf]2[/sup:30tulfvf] = (x[sup:30tulfvf]2[/sup:30tulfvf] – 8x + 16) ? (x[sup:30tulfvf]2[/sup:30tulfvf] + 16) = x[sup:30tulfvf]4[/sup:30tulfvf] + 16x[sup:30tulfvf]2[/sup:30tulfvf] – 8x[sup:30tulfvf]3[/sup:30tulfvf] – 128x + 16x[sup:30tulfvf]2[/sup:30tulfvf] + 256
? – 12x[sup:30tulfvf]2[/sup:30tulfvf] + 128x – 256 = 0
? 12x[sup:30tulfvf]2[/sup:30tulfvf] – 128x + 256 = 0
? 3x[sup:30tulfvf]2[/sup:30tulfvf] – 32x + 64 = 0
? x = {– (– 32) ± sqrt[(– 32)[sup:30tulfvf]2[/sup:30tulfvf] – 4(3)(64)]}/[2(3)] = (32 ± sqrt[1024 – 768])/6 = (32 ± sqrt[256])/6 = (32 ± 16)/6 = 16/6 or 48/6 = 8/3 or 8
Now my textbook (and my graph of s) indicates that s is a minimum when x = 8/3. Any my graph of s doesn't show any evidence of a maximum or a minimum at x = 8. So the root I got of x = 8 is an error. Where did it come from?
Here's the problem:
Find the point on the x-axis from which the sum of the distances to (0, 4) and (4, 2) is a minimum.
Here's what I did:
Let x be the point on the x-axis, and let s be the sum of the distances. Then:
s = sqrt[(0 – x)[sup:30tulfvf]2[/sup:30tulfvf] + (4 – 0)[sup:30tulfvf]2[/sup:30tulfvf]] + sqrt(4 – x)[sup:30tulfvf]2[/sup:30tulfvf] + (2 – 0)[sup:30tulfvf]2[/sup:30tulfvf]] = sqrt[x[sup:30tulfvf]2[/sup:30tulfvf] + 16] + sqrt[16 – 8x + x[sup:30tulfvf]2[/sup:30tulfvf] + 4] = sqrt[x[sup:30tulfvf]2[/sup:30tulfvf] + 16] + sqrt[x[sup:30tulfvf]2[/sup:30tulfvf] – 8x + 20]. We want to find x when s is a minimum.
s' = 1/2 ? 1/sqrt[x[sup:30tulfvf]2[/sup:30tulfvf] + 16] ? 2x + 1/2 ? 1/sqrt[x[sup:30tulfvf]2[/sup:30tulfvf] – 8x + 20] ? (2x – 8) = x/sqrt[x[sup:30tulfvf]2[/sup:30tulfvf] + 16] + (x – 4)/sqrt[x[sup:30tulfvf]2[/sup:30tulfvf] – 8x + 20] ? 0
? x/sqrt[x[sup:30tulfvf]2[/sup:30tulfvf] + 16] = – (x – 4)/sqrt[x[sup:30tulfvf]2[/sup:30tulfvf] – 8x + 20]
? x ? sqrt[x[sup:30tulfvf]2[/sup:30tulfvf] – 8x + 20] = (– 1) ? (x – 4) ? sqrt[x[sup:30tulfvf]2[/sup:30tulfvf] + 16]
? x[sup:30tulfvf]2[/sup:30tulfvf] ? (x[sup:30tulfvf]2[/sup:30tulfvf] – 8x + 20) = (x – 4)[sup:30tulfvf]2[/sup:30tulfvf] ? (x[sup:30tulfvf]2[/sup:30tulfvf] + 16)
? x[sup:30tulfvf]4[/sup:30tulfvf] – 8x[sup:30tulfvf]3[/sup:30tulfvf] + 20x[sup:30tulfvf]2[/sup:30tulfvf] = (x[sup:30tulfvf]2[/sup:30tulfvf] – 8x + 16) ? (x[sup:30tulfvf]2[/sup:30tulfvf] + 16) = x[sup:30tulfvf]4[/sup:30tulfvf] + 16x[sup:30tulfvf]2[/sup:30tulfvf] – 8x[sup:30tulfvf]3[/sup:30tulfvf] – 128x + 16x[sup:30tulfvf]2[/sup:30tulfvf] + 256
? – 12x[sup:30tulfvf]2[/sup:30tulfvf] + 128x – 256 = 0
? 12x[sup:30tulfvf]2[/sup:30tulfvf] – 128x + 256 = 0
? 3x[sup:30tulfvf]2[/sup:30tulfvf] – 32x + 64 = 0
? x = {– (– 32) ± sqrt[(– 32)[sup:30tulfvf]2[/sup:30tulfvf] – 4(3)(64)]}/[2(3)] = (32 ± sqrt[1024 – 768])/6 = (32 ± sqrt[256])/6 = (32 ± 16)/6 = 16/6 or 48/6 = 8/3 or 8
Now my textbook (and my graph of s) indicates that s is a minimum when x = 8/3. Any my graph of s doesn't show any evidence of a maximum or a minimum at x = 8. So the root I got of x = 8 is an error. Where did it come from?