Let the relation ~ on \(\displaystyle \mathbb{C}\) be defined by:
. . . . .\(\displaystyle x\, \sim\, y\, \Longleftrightarrow\, x^3\, =\, y^3\)
...for \(\displaystyle x,\, y\, \in\, \mathbb{C}.\) You may assume that ~ is an equivalent relation.
Find all the elements of the equivalence classes \(\displaystyle \left[e^{i\pi / 4}\right]\, =\, \left\{z\, \in\, \mathbb{C}\, :\, z\, \sim\, e^{i\pi /4}\right\}\) and \(\displaystyle \left[-2\right]\, =\, \left\{z\, \in\, \mathbb{C}\, :\, z\, \sim \, -2\right\}\)
Any ideas on how to progress with this? Do you cube and add 2pi to the arguments? For the second part is it acceptable to rewrite -2 in exponential form and then continue from there? Thanks
https://gyazo.com/c0663bbc6abe1224ba5ea32de4568cec
. . . . .\(\displaystyle x\, \sim\, y\, \Longleftrightarrow\, x^3\, =\, y^3\)
...for \(\displaystyle x,\, y\, \in\, \mathbb{C}.\) You may assume that ~ is an equivalent relation.
Find all the elements of the equivalence classes \(\displaystyle \left[e^{i\pi / 4}\right]\, =\, \left\{z\, \in\, \mathbb{C}\, :\, z\, \sim\, e^{i\pi /4}\right\}\) and \(\displaystyle \left[-2\right]\, =\, \left\{z\, \in\, \mathbb{C}\, :\, z\, \sim \, -2\right\}\)
Any ideas on how to progress with this? Do you cube and add 2pi to the arguments? For the second part is it acceptable to rewrite -2 in exponential form and then continue from there? Thanks
https://gyazo.com/c0663bbc6abe1224ba5ea32de4568cec
Last edited by a moderator: