Hi, I must solve [MATH]\log_{2}^{2} \cos x+\log_{2} \cos x \geq 0[/MATH].
My work is this: it must be [MATH]\cos x >0 \Leftrightarrow -\frac{\pi}{2} +2k\pi < x < \frac{\pi}{2}+2k\pi[/MATH]. The disequation is equivalent to
[MATH]\log_{2} \cos x (\log_{2} \cos x +1) \geq 0[/MATH]So I have to study
[MATH]\log_{2} \cos x \geq 0 \Leftrightarrow \cos x \geq 1 \Leftrightarrow x=2k\pi[/MATH]And
[MATH]\log_{2} \cos x \geq 0+1 \geq 0 \Leftrightarrow \cos x \geq \frac{1}{2} \Leftrightarrow -\frac{\pi}{3}+2k\pi \leq x \leq \frac{\pi}{3}+2k\pi[/MATH]So the disequation is positive when [MATH]\left(x \leq -\frac{\pi}{3}+2k\pi \ \text{or} \ x \geq \frac{\pi}{3}+2k\pi\right) \ \text{and} \ x=2k\pi[/MATH]; so considering the existence condition of the logarithms the solutions is [MATH]\left(-\frac{\pi}{2} +2k\pi < x \leq -\frac{\pi}{3}+2k\pi \ \text{or} \ \frac{\pi}{3}+2k\pi \leq x < \frac{\pi}{2}+2k\pi \right) \ \text{and} \ x=2k\pi[/MATH], with [MATH]k\in\mathbb{Z}[/MATH].
However, according to my textbook the solution is [MATH]\left(\frac{\pi}{3}+2k\pi \leq x < \frac{\pi}{2}+2k\pi \ \text{or} \ \frac{3}{2}\pi+2k\pi < x \leq \frac{5}{3}\pi+2k\pi \right) \ \text{and} \ x=2k\pi[/MATH], with [MATH]k\in\mathbb{Z}[/MATH]; am I doing something wrong or are my solution and the textbook's one equivalent somehow? If they are equivalent, why is that so? Is somehow related to the fact that [MATH]k[/MATH] varies in an infinite set so I can obtain one from another letting [MATH]k[/MATH] vary?
Thanks.
My work is this: it must be [MATH]\cos x >0 \Leftrightarrow -\frac{\pi}{2} +2k\pi < x < \frac{\pi}{2}+2k\pi[/MATH]. The disequation is equivalent to
[MATH]\log_{2} \cos x (\log_{2} \cos x +1) \geq 0[/MATH]So I have to study
[MATH]\log_{2} \cos x \geq 0 \Leftrightarrow \cos x \geq 1 \Leftrightarrow x=2k\pi[/MATH]And
[MATH]\log_{2} \cos x \geq 0+1 \geq 0 \Leftrightarrow \cos x \geq \frac{1}{2} \Leftrightarrow -\frac{\pi}{3}+2k\pi \leq x \leq \frac{\pi}{3}+2k\pi[/MATH]So the disequation is positive when [MATH]\left(x \leq -\frac{\pi}{3}+2k\pi \ \text{or} \ x \geq \frac{\pi}{3}+2k\pi\right) \ \text{and} \ x=2k\pi[/MATH]; so considering the existence condition of the logarithms the solutions is [MATH]\left(-\frac{\pi}{2} +2k\pi < x \leq -\frac{\pi}{3}+2k\pi \ \text{or} \ \frac{\pi}{3}+2k\pi \leq x < \frac{\pi}{2}+2k\pi \right) \ \text{and} \ x=2k\pi[/MATH], with [MATH]k\in\mathbb{Z}[/MATH].
However, according to my textbook the solution is [MATH]\left(\frac{\pi}{3}+2k\pi \leq x < \frac{\pi}{2}+2k\pi \ \text{or} \ \frac{3}{2}\pi+2k\pi < x \leq \frac{5}{3}\pi+2k\pi \right) \ \text{and} \ x=2k\pi[/MATH], with [MATH]k\in\mathbb{Z}[/MATH]; am I doing something wrong or are my solution and the textbook's one equivalent somehow? If they are equivalent, why is that so? Is somehow related to the fact that [MATH]k[/MATH] varies in an infinite set so I can obtain one from another letting [MATH]k[/MATH] vary?
Thanks.