As pka said, multiplying by 3 gives \(\displaystyle x^2- 28x+ 27= (x- 1)(x- 27)\)
But the quadratic formula certainly ought to give them too!
The "discriminant" is \(\displaystyle b^2- 4ac= \left(\frac{28}{3}\right)^2- 4\left(\frac{1}{3}\right)(9)= \frac{784}{9}- \frac{36}{3}= \frac{784}{9}- \frac{108}{9}\)
\(\displaystyle = \frac{676}{9}= \left(\frac{26}{3}\right)^2\)
So \(\displaystyle \frac{-b\pm\sqrt{b^2- 4ac}}{2a}= \frac{-\frac{28}{3}\pm\frac{26}{3}}{2(1/3)}\)
Taking the "+", \(\displaystyle x= (-\frac{28}{3}+ \frac{26}{3})(3/2)= \left(\frac{2}{3}\right)\left(\frac{3}{2}\right)= 1\).
Taking the '-", \(\displaystyle x= (-\frac{28}{3}- \frac{26}{3})(3/2)= \left(\frac{54}{3}\right)\left(\frac{3}{2}\right)= 27\).