equation for tangent plane

JJ007

New member
Joined
Nov 7, 2009
Messages
27
Find an equation for the tangent plane to the surface f(x,y)=17(4x22y2)\displaystyle f(x,y)=\frac{1}{7}(4x^2-2y^2)at point (-2,-1,2)

fx=127?\displaystyle f_{x}=\frac{-12}{7}?
fy=47?\displaystyle f_{y}=\frac{4}{7}?

The multiple choice answers are mostly 16x-4y.... =0 so there's something I'm doing wrong.
 
z = f(x,y) = 17(4x22y2) at point (2,1,2).\displaystyle z \ = \ f(x,y) \ = \ \frac{1}{7}(4x^2-2y^2) \ at \ point \ (-2,-1,2).

Now, we want to find an equation to the tangent plane to f(x,y) at the point (2,1,2).\displaystyle Now, \ we \ want \ to \ find \ an \ equation \ to \ the \ tangent \ plane \ to \ f(x,y) \ at \ the \ point \ (-2,-1,2).

fx(x,y) = 8x7 and fy(x,y) = 4y7.\displaystyle f_x(x,y) \ = \ \frac{8x}{7} \ and \ f_y(x,y) \ = \ \frac{-4y}{7}.

fx(2,1) = 167 and fy(2,1) = 47\displaystyle f_x(-2,-1) \ = \ \frac{-16}{7} \ and \ f_y(-2,-1) \ = \ \frac{4}{7}

Hence, 167(x+2)+47(y+1)(z2) = 0.\displaystyle Hence, \ \frac{-16}{7}(x+2)+\frac{4}{7}(y+1)-(z-2) \ = \ 0.

= 16x7327+4y7+47z+2 = 0\displaystyle = \ \frac{-16x}{7}-\frac{32}{7}+\frac{4y}{7}+\frac{4}{7}-z+2 \ = \ 0

= 16x32+4y+47z+14 = 0, = 16x+4y7z14 = 0\displaystyle = \ -16x-32+4y+4-7z+14 \ = \ 0, \ = \ -16x+4y-7z-14 \ = \ 0

Ergo, final answer is 16x4y+7z+14 = 0, QED.\displaystyle Ergo, \ final \ answer \ is \ 16x-4y+7z+14 \ = \ 0, \ QED.

Note: Since the point is tangent to both the plane and the f(x,y), then an easy check\displaystyle Note: \ Since \ the \ point \ is \ tangent \ to \ both \ the \ plane \ and \ the \ f(x,y), \ then \ an \ easy \ check

is to make sure the point is in both equations.\displaystyle is \ to \ make \ sure \ the \ point \ is \ in \ both \ equations.
 
Top