Equality

mathematics

New member
Joined
Jun 26, 2009
Messages
12
I am in need of this help pleaseee

Determine the solution region of ; 3x(2y-3)<0

Please show me how to do this
 
Hello, mathematics!

Determine the solution region of: .3x(2y3)<0\displaystyle 3x(2y-3)\:<\:0

The product of 3x and 2y3 is negative.\displaystyle \text{The product of }3x\text{ and }2y-3\text{ is negative.}


There are two cases:\displaystyle \text{There are two cases:}

. . [1]  3x>0 and 2y3<0\displaystyle [1]\;3x \,>\,0\:\text{ and }\:2y-3\:<\:0
. . [2]  3x<0 and 2y3>0\displaystyle [2]\;3x\,<\,0\:\text{ and }\:2y-3\,>\,0


Case [1]:   3x>0x>02y3<0y<32\displaystyle \text{Case [1]: }\;\begin{array}{ccccccc}3x \:>\: 0 & \Rightarrow & x \:>\: 0 \\2y-3 \:<\: 0 & \Rightarrow & y \: < \: \frac{3}{2} \end{array}


Case [2]:   3x<0x<02y3>0y>32\displaystyle \text{Case [2]: }\;\begin{array}{cccc}3x\:<\:0 & \Rightarrow & x \:<\:0 \\ 2y-3 \:>\:0 & \Rightarrow & y \:>\:\frac{3}{2} \end{array}


The solution region looks like this:\displaystyle \text{The solution region looks like this:}


Code:
           :::::|
          ::::::|
         :::::::|
        ::::::::|
      - - - - - + - - - - - -  y = 3/2
                |:::::::::
                |::::::::
      ----------+:-:-:-:-------
               0|::::::
                |:::::
                |::::
 
Top