marc146 said:
Ok so I have two systems
A=[[0,1,2],[3,-2,1],[2,-4,-5]]
and
b= [[2],[0],[1]].
The goal is to determine the column vector g so that the eigevalues of A_c= A-b*g^(T) are at -3,-2,2+- i*3*sqrt(3/2).
The textbook for class is advanced engineering by Greenberg. But there is nothing remotely close to solving this problem in there. Any help would be appreciated.
Same as here:
\(\displaystyle A=\begin{bmatrix}0 & 1 & -2\\3 & -2 & 1 \\2 & -4 & -5\end{bmatrix}\)
b=\(\displaystyle \begin{bmatrix}2 \\ 0 \\1\end{bmatrix}\)
and i have to determine the column vector g so that the eigenvalues of \(\displaystyle A{c}=A-b\cdot g^{T}\) (g transpose) are at \(\displaystyle -3, -2\pm3i\sqrt{\frac{3}{2}}\)
To clarify, what does the 'c' stand for?. I assume a column matrix.
The characteristic polynomial would be \(\displaystyle x^{3}+7x^{2}+\frac{59}{2}x+\frac{105}{2}=0\)
Putting it together gives:
\(\displaystyle \begin{bmatrix}0&1&-2\\3&-2&1\\2&-4&-5\end{bmatrix}\cdot\begin{bmatrix}c_{1}\\c_{2}\\c_{3}\end{bmatrix}=\begin{bmatrix}0&1&-2\\3&-2&1\\2&-4&-5\end{bmatrix}-\begin{bmatrix}2\\0\\1\end{bmatrix}\cdot \begin{bmatrix}g_{1}&g_{2}&g_{3}\end{bmatrix}\)
Multiplying and simplifying gives:
\(\displaystyle \begin{bmatrix}0&c_{2}&-2c_{3}\\3c_{1}&-2c_{2}&c_{3}\\2c_{1}&-4c_{2}&-5c_{3}\end{bmatrix}=\begin{bmatrix}-2g_{1}&1-2g_{2}&-2g_{3}-2\\3&-2&1\\2-g_{1}&-g_{2}-4&-g_{3}-5\end{bmatrix}\)
Can you get any ideas from here?. I will look a little more tomorrow.