Eigenfunction integral

zamri

New member
Joined
Feb 23, 2012
Messages
6
Hi, i wonder if anyone can explain how that the integral result of the eigenfunctions look like this..(exponential terms etc). I attach the image it is pretty much self explanatory.eqd.jpg
 
The image is not at all "self explanatory"! What is "S" (the interval the integraton is over)? The result clearly depends upon that. Also, \(\displaystyle \psi(x,y)\) and \(\displaystyle \phi(x,y,z)\) are defined as functions of x and y (and z) while in the integral they have \(\displaystyle \psi(x)\) and \(\displaystyle \phi(x)\), functions of x only.
 
For any others who can't make out the image in the thumbnail, the text in the image is as follows:

\(\displaystyle \displaystyle{\mbox{Let }\, \phi_m(x,\,y)\, =\, \sin\left(\frac{m\pi x}{a}\right)\sin\left(\frac{n\pi y}{b}\right)\, \mbox{ and }\, \psi_r(x,\, y\, z)\, =\, \cos\left(\frac{p\pi x}{a}\right)\cos\left(\frac{q\pi y}{b}\right)\cos\left(\frac{r\pi z}{c}\right)}\)

\(\displaystyle \displaystyle{\mbox{To solve }\, B_{mr}\, =\, \left[\frac{C_o^2 \rho}{V\epsilon_r \epsilon_m M}\right]^{1/2}\int_S\, \psi_r (x)\phi_m (x)\, dx,\, \mbox{ let }\, K\, =\, \left(\frac{c_o^2 p}{V\epsilon_r \epsilon_m M}\right)^{1/2}}\)

\(\displaystyle \displaystyle{\mbox{My question is how to get the following:}}\)

\(\displaystyle \displaystyle{B_{mr}\, =\, K(-1)^r \left[\frac{ma}{p^2 \pi}\, \left\{\frac{(-1)^m (-1)^p\, -\, 1}{1\, -\, (m/p)^2}\right\}\right]\left[\frac{nb}{q^2 \pi}\left\{\frac{(-1)^n (-1)^q \, -\, 1}{1\, -\, (n/q)^2}\right\}\right]\, \mbox{ for }\, m\, \neq\, p,\, n \, \neq\, q}\)

\(\displaystyle \displaystyle{B_{mr}\, =\, 0\, \mbox{ for }\, (m\,+\,p)\, \mbox{ even or }\, (n\, +\, q)\, \mbox{ even.}}\)
 
Last edited by a moderator:
Top