For any others who can't make out the image in the thumbnail, the text in the image is as follows:
\(\displaystyle \displaystyle{\mbox{Let }\, \phi_m(x,\,y)\, =\, \sin\left(\frac{m\pi x}{a}\right)\sin\left(\frac{n\pi y}{b}\right)\, \mbox{ and }\, \psi_r(x,\, y\, z)\, =\, \cos\left(\frac{p\pi x}{a}\right)\cos\left(\frac{q\pi y}{b}\right)\cos\left(\frac{r\pi z}{c}\right)}\)
\(\displaystyle \displaystyle{\mbox{To solve }\, B_{mr}\, =\, \left[\frac{C_o^2 \rho}{V\epsilon_r \epsilon_m M}\right]^{1/2}\int_S\, \psi_r (x)\phi_m (x)\, dx,\, \mbox{ let }\, K\, =\, \left(\frac{c_o^2 p}{V\epsilon_r \epsilon_m M}\right)^{1/2}}\)
\(\displaystyle \displaystyle{\mbox{My question is how to get the following:}}\)
\(\displaystyle \displaystyle{B_{mr}\, =\, K(-1)^r \left[\frac{ma}{p^2 \pi}\, \left\{\frac{(-1)^m (-1)^p\, -\, 1}{1\, -\, (m/p)^2}\right\}\right]\left[\frac{nb}{q^2 \pi}\left\{\frac{(-1)^n (-1)^q \, -\, 1}{1\, -\, (n/q)^2}\right\}\right]\, \mbox{ for }\, m\, \neq\, p,\, n \, \neq\, q}\)
\(\displaystyle \displaystyle{B_{mr}\, =\, 0\, \mbox{ for }\, (m\,+\,p)\, \mbox{ even or }\, (n\, +\, q)\, \mbox{ even.}}\)