Hello elise:
Is this your integral:
\(\displaystyle \L\\\frac{1}{2}\int_{0}^{9}\frac{1}{(1+t)^{2}}dt\)
Let \(\displaystyle \L\\u=1+t,\;\ then \;\ du=dt\)
Change variables of integration from 1 to 10 because letting t=1 and 9, we have u=1+9=10 and u=1+0=1
\(\displaystyle \L\\\frac{1}{2}\int_{1}^{10}\frac{1}{u^{2}}du\)
Integrate:
\(\displaystyle \L\\\frac{1}{2}\left[\frac{-1}{u}\right]\)
\(\displaystyle \L\\\frac{1}{2}(\frac{-1}{10}-\frac{-1}{1})=\frac{9}{20}=0.45\)
So, you have \(\displaystyle \H\\e^{\frac{9}{20}}\approx{1.5683}\)