dy/dx

Hello, ceerh!

I am trying to find \(\displaystyle \frac{dy}{dx}\;\) if: \(\displaystyle \ln x\:=\:\cos(y)\)
I assume this is Implicit Differentiation.

We have: \(\displaystyle \:\cos(y)\:=\:\ln(x)\)

Then: \(\displaystyle \:-\sin(y)\cdot\left(\frac{dy}{dx}\right)\:=\:\frac{1}{x}\)

Therefore: \(\displaystyle \L\:\frac{dy}{dx}\:=\:-\frac{1}{x\cdot\sin(y)}\)


~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

It can be done explicitly, too . . .

We have: \(\displaystyle \:\cos(y)\:=\:\ln(x)\)

Then: \(\displaystyle \:y\;=\;\cos^{-1}[\ln(x)]\)

Therefore: \(\displaystyle \L\;\frac{dy}{dx}\:=\:\frac{-1}{\sqrt{1\,-\,[\ln(x)]^2}}\,\cdot\,\frac{1}{x} \;= \;\frac{-1}{x\sqrt{1\,-\,[\ln x]^2}}\)
 
Top