Hello, ceerh!
I am trying to find \(\displaystyle \frac{dy}{dx}\;\) if: \(\displaystyle \ln x\:=\:\cos(y)\)
I assume this is Implicit Differentiation.
We have: \(\displaystyle \:\cos(y)\:=\:\ln(x)\)
Then: \(\displaystyle \:-\sin(y)\cdot\left(\frac{dy}{dx}\right)\:=\:\frac{1}{x}\)
Therefore: \(\displaystyle \L\:\frac{dy}{dx}\:=\:-\frac{1}{x\cdot\sin(y)}\)
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
It can be done explicitly, too . . .
We have: \(\displaystyle \:\cos(y)\:=\:\ln(x)\)
Then: \(\displaystyle \:y\;=\;\cos^{-1}[\ln(x)]\)
Therefore: \(\displaystyle \L\;\frac{dy}{dx}\:=\:\frac{-1}{\sqrt{1\,-\,[\ln(x)]^2}}\,\cdot\,\frac{1}{x} \;= \;\frac{-1}{x\sqrt{1\,-\,[\ln x]^2}}\)