Hi guys. Would appreciate if anyone of you could help me with this question.
\(\displaystyle \mbox{Question: Compute and expand: }\, \)\(\displaystyle \displaystyle \sum_{i=1}^m\, \sum_{j=1}^n\, (i\, +\, j^2)\)
I know that these 2 rules:
. . . . .\(\displaystyle \mbox{1) }\, \)\(\displaystyle \displaystyle \sum_{i=1}^n\, i^2\, =\, 1^2\, +\, 2^2\, +\, 3^2\, +\, ...\, +\, n^2\, =\, \dfrac{1}{6}\, n\,(n\, +\, 1)\,(2n\, +\, 1)\)
. . . . .\(\displaystyle \mbox{2) }\, \)\(\displaystyle \displaystyle \sum_{i=1}^n\, i\, =\, 1\, +\, 2\, +\, 3\, +\, ... \, +\, n\, =\, \dfrac{1}{2}\,n\,(n\, +\, 1)\)
Thus, substituting in:
. . . . .\(\displaystyle \displaystyle \sum_{i=1}^m \, i\, +\, \dfrac{1}{6}\, n\,(n\, +\, 1)\,(2n\, +\, 1)\)
. . . . .\(\displaystyle \displaystyle \sum_{i=1}^m \, i\, +\, \dfrac{1}{3}\, n^3\, +\, \dfrac{1}{2}\, n^2\, +\, \dfrac{1}{2}\, n\)
. . . . .\(\displaystyle \dfrac{1}{2}\, m\, (m\, +\, 1)\, +\, \dfrac{1}{3}\, n^3\, +\, \dfrac{1}{2}\, n^2\, +\, \dfrac{1}{2}\, n\)
. . . . .\(\displaystyle \dfrac{1}{2}\, m^2\, +\, \dfrac{1}{2}\, m\, +\, \dfrac{1}{3}\, n^3\, +\, \dfrac{1}{2}\, n^2\, +\, \dfrac{1}{2}\, n\)
And I am stuck here.
The answer should be:
. . . . .\(\displaystyle \dfrac{1}{6}\, mn\, (2n^2\, +\,3n\, +\, 3m\, +\, 4)\)
Thanks. I have a hard time doing it!
\(\displaystyle \mbox{Question: Compute and expand: }\, \)\(\displaystyle \displaystyle \sum_{i=1}^m\, \sum_{j=1}^n\, (i\, +\, j^2)\)
I know that these 2 rules:
. . . . .\(\displaystyle \mbox{1) }\, \)\(\displaystyle \displaystyle \sum_{i=1}^n\, i^2\, =\, 1^2\, +\, 2^2\, +\, 3^2\, +\, ...\, +\, n^2\, =\, \dfrac{1}{6}\, n\,(n\, +\, 1)\,(2n\, +\, 1)\)
. . . . .\(\displaystyle \mbox{2) }\, \)\(\displaystyle \displaystyle \sum_{i=1}^n\, i\, =\, 1\, +\, 2\, +\, 3\, +\, ... \, +\, n\, =\, \dfrac{1}{2}\,n\,(n\, +\, 1)\)
Thus, substituting in:
. . . . .\(\displaystyle \displaystyle \sum_{i=1}^m \, i\, +\, \dfrac{1}{6}\, n\,(n\, +\, 1)\,(2n\, +\, 1)\)
. . . . .\(\displaystyle \displaystyle \sum_{i=1}^m \, i\, +\, \dfrac{1}{3}\, n^3\, +\, \dfrac{1}{2}\, n^2\, +\, \dfrac{1}{2}\, n\)
. . . . .\(\displaystyle \dfrac{1}{2}\, m\, (m\, +\, 1)\, +\, \dfrac{1}{3}\, n^3\, +\, \dfrac{1}{2}\, n^2\, +\, \dfrac{1}{2}\, n\)
. . . . .\(\displaystyle \dfrac{1}{2}\, m^2\, +\, \dfrac{1}{2}\, m\, +\, \dfrac{1}{3}\, n^3\, +\, \dfrac{1}{2}\, n^2\, +\, \dfrac{1}{2}\, n\)
And I am stuck here.
The answer should be:
. . . . .\(\displaystyle \dfrac{1}{6}\, mn\, (2n^2\, +\,3n\, +\, 3m\, +\, 4)\)
Thanks. I have a hard time doing it!
Attachments
Last edited by a moderator: