jddoxtator
New member
- Joined
- May 28, 2024
- Messages
- 43
The question:
Prove the statement is true for all natural numbers.
500 + 100 + 20 + ... + 4[5^(4 -n)] = 625( 1 - 1/5^n)
My answer:
Step 1:
For n=1,
4[5^(4 - 1)] = 625( 1 - 1/5^1)
4(125) = 625( 4/5)
500 = 500
The statement is true for n=1.
Step 2:
Assume n=k,
500 + 100 + 20 + ... + 4[5^(4 - k) = 625( 1 - 1/5^k)
Step 3:
Prove for (k + 1),
500 + 100 + 20 + ... + 4[5^(4 - k) + 4[5^[4 - (k + 1)]] = 625( 1 - 1/5^k) + 4[5^[4 - (k + 1)]] - Expression with factor including (k + 1) added to both sides.
= 625(1 - 1/5^k) + 4[5^4/5^(k +1)] - Negative exponent of 5 moved to denominator.
= 625(1 - 1/5^k) + 2500/5^(k + 1) - Simplify
= 625[(1 -1/5^k) + 4/5^(k + 1)] - Distributive property
= 625[1 - 5/5^(k + 1) + 4/5^ (k + 1)] - Fraction 1/5^k multiplied by 5 in both numerator and denominator to equalize bases to 5^(k + 1)
= 625[1 - 1/5^(k + 1)] - Simplify
The last statement is the statement to be proved for n = (k + 1)
This proves that the statement is true for all natural numbers n.
Prove the statement is true for all natural numbers.
500 + 100 + 20 + ... + 4[5^(4 -n)] = 625( 1 - 1/5^n)
My answer:
Step 1:
For n=1,
4[5^(4 - 1)] = 625( 1 - 1/5^1)
4(125) = 625( 4/5)
500 = 500
The statement is true for n=1.
Step 2:
Assume n=k,
500 + 100 + 20 + ... + 4[5^(4 - k) = 625( 1 - 1/5^k)
Step 3:
Prove for (k + 1),
500 + 100 + 20 + ... + 4[5^(4 - k) + 4[5^[4 - (k + 1)]] = 625( 1 - 1/5^k) + 4[5^[4 - (k + 1)]] - Expression with factor including (k + 1) added to both sides.
= 625(1 - 1/5^k) + 4[5^4/5^(k +1)] - Negative exponent of 5 moved to denominator.
= 625(1 - 1/5^k) + 2500/5^(k + 1) - Simplify
= 625[(1 -1/5^k) + 4/5^(k + 1)] - Distributive property
= 625[1 - 5/5^(k + 1) + 4/5^ (k + 1)] - Fraction 1/5^k multiplied by 5 in both numerator and denominator to equalize bases to 5^(k + 1)
= 625[1 - 1/5^(k + 1)] - Simplify
The last statement is the statement to be proved for n = (k + 1)
This proves that the statement is true for all natural numbers n.