Double check my work (find rate of change)

Becky4paws

Junior Member
Joined
Feb 15, 2006
Messages
63
this one is tough for me.

Find the rate of change for the given function f(x) with respect to x for the prescribed value of x.

f(x) = (x + square root x)/(x*square root x)

f'(x) = (1 + x^1/2)/(1*x^-1/2) = 1 + 1/2*x^-1/2/(1*-1/2*x^-3/2)
 
Re: Double check my work

Hello, Becky4paws!

Find the rate of change for the given function \(\displaystyle f(x)\) with respect to \(\displaystyle x\) for the prescribed value of \(\displaystyle x.\)

\(\displaystyle \L\;\;\;f(x) \:= \:\frac{x\,+\,\sqrt{x}}{x\cdot\sqrt{x}}\)
Why not simplify first?

We have: \(\displaystyle \L\,f(x)\;=\;\frac{x\,+\,x^{\frac{1}{2}}}{x\cdot x^{\frac{1}{2}}} \;=\;\frac{x\,+\,x^{\frac{1}{2}}}{x^{\frac{3}{2}}} \;= \;\frac{x}{x^{\frac{3}{2}}}\,+\,\frac{x^{\frac{1}{2}}}{x^{\frac{3}{2}}}\)

Hence: \(\displaystyle \L\,f(x)\;=\;x^{-\frac{1}{2}}\,+\,x^{-1}\)


Now differentiate . . .
 
Top