dont know how to do this.....

G

Guest

Guest
Use the linear approximation method to estimate the value of ln (2.7^2) in terms of e
 
Hello, bobby77!

I haven't done this for a while . . . hope I get it right.

Use the linear approximation method to estimate the value of ln(2.72)\displaystyle \ln(2.7^2) in terms of e\displaystyle e
Let y=ln(x2)=2ln(x)\displaystyle y \:= \:\ln(x^2) \:= \:2\,\ln(x)

Then dy=2dxx\displaystyle dy \,= \,\frac{2\,dx}{x}

Since 2.7  e0.0183\displaystyle 2.7\ \approx\ e\,-\,0.0183, we will use: x=1,  dx=0.0183\displaystyle x = 1,\;dx\,=\,-0.0183

. . Then: .dy = 2(0.0183)e = 0.01346388\displaystyle dy\ = \ \frac{2(-0.0183)}{e}\ =\ -0.01346388

Hence: .2ln(e0.0183)  y+dy = 2ln(e)0.01346388\displaystyle 2\,\ln(e\,-\,0.0183)\ \approx\ y\,+\,dy\ = \ 2\,\ln(e)\,-\,0.01346388

Therefore: .ln(2.72)  1.986535612\displaystyle \ln(2.7^2)\ \approx\ \underbrace{1.9865}35612

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

This approximation is very good . . .

The actual value is: .ln(2.72) = ln(7.29) = 1.986503546\displaystyle \ln(2.7^2) \ =\ \ln(7.29)\ = \ \underbrace{1.9865}03546


Given: ln(7.29) = 1.9865, then e1.9865 = 7.28997...\displaystyle \text{Given: }\ln(7.29)\ =\ 1.9865\text{, then }e^{1.9865}\ =\ 7.28997...
. . . . close enough!
 
Top