Domain and range

Jossybest

New member
Joined
Mar 11, 2021
Messages
2
Specify the range of values (codomain) the following function
1. f:y=sin(×3-1)
2. Solve in R
3+|×|
________=-3
3-|×|

3. Determine the parameter m ( when m is real number so that the equation has a repeated double root) ×2-×+m×+1=0

4. Specify the algebraic expression
× - y ×4 - y4
_______ , __________
×y - ×2 y2 -2×y+×2

5. Determine the missing coordinate of the vector u to be the vectors hand v anthogonal.
u(u,: - 2): v(4 : 10)
 
Is this an accurate copy of your list of questions?

1. Find the range of [MATH]f\ [/MATH]: [MATH]f(x)=sin(x^3-1)\ [/MATH]
2. Solve in [MATH]\mathbb{R}[/MATH]:

[MATH]\frac{3+\left|x\right|}{3-\left|x\right|}=-3[/MATH]
3. For what real values of the parameter [MATH]m[/MATH], does [MATH]x^2-x+mx+1=0[/MATH] have repeated roots?

4. Simplify:

[MATH]\frac{x-y}{xy-x^2}\times\frac{4-y^4}{y^2-2xy+x^2}[/MATH]
5. Determine the value of [MATH]u[/MATH] for which the vectors [MATH]\left(\begin{matrix}u\\-2\\\end{matrix}\right)[/MATH] and [MATH]\left(\begin{matrix}4\\10\\\end{matrix}\right)[/MATH] are orthogonal.
 
since the function is multiplied by 1

[MATH]y = \textcolor{blue}{1} \cdot \sin(3x - 1)[/MATH], the range is [MATH][-1, 1][/MATH]
Nasi112,

it is excellent that you are assisting fellow students. However, in this forum do not give away the final answer till the OP has shown some efforts to solve. You may makeup a similar but different problem and solve it.
 
Is this an accurate copy of your list of questions?

1. Find the range of [MATH]f\ [/MATH]: [MATH]f(x)=sin(x^3-1)\ [/MATH]
2. Solve in [MATH]\mathbb{R}[/MATH]:

[MATH]\frac{3+\left|x\right|}{3-\left|x\right|}=-3[/MATH]
3. For what real values of the parameter [MATH]m[/MATH], does [MATH]x^2-x+mx+1=0[/MATH] have repeated roots?

4. Simplify:

[MATH]\frac{x-y}{xy-x^2}\times\frac{4-y^4}{y^2-2xy+x^2}[/MATH]
5. Determine the value of [MATH]u[/MATH] for which the vectors [MATH]\left(\begin{matrix}u\\-2\\\end{matrix}\right)[/MATH] and [MATH]\left(\begin{matrix}4\\10\\\end{matrix}\right)[/MATH] are orthogonal.
Yes this is the accurate questions
 
Yes this is the accurate questions
Good. Now please do as we ask, so we can see what help you need:
 
Top