I have difficulties with this one.
Find all a(integers) so that
\(\displaystyle \begin{array}{l}
a_0 = 4 \\
a_1 = 1 \\
a_n = 12a{}_{n - 1} - 27a_{n - 2} \\
\end{array}\)
Prove that if \(\displaystyle n \ge 1 \Rightarrow 3^{n - 1} |a_n\) but not \(\displaystyle 3^n |a_n\)
Find all a(integers) so that
\(\displaystyle \begin{array}{l}
a_0 = 4 \\
a_1 = 1 \\
a_n = 12a{}_{n - 1} - 27a_{n - 2} \\
\end{array}\)
Prove that if \(\displaystyle n \ge 1 \Rightarrow 3^{n - 1} |a_n\) but not \(\displaystyle 3^n |a_n\)