\(\displaystyle u = f(x)e^{-x/2}\)
\(\displaystyle du = \left(-\frac{1}{2} f(x)e^{-x/2} + f'(x)e^{-x/2}\right)dx\)
\(\displaystyle \int_{f(3)e^{-\frac{3}{2}}}^0 du = \int_3^{\infty} \left(-\frac{1}{2} f(x)e^{-x/2} + f'(x)e^{-x/2}\right)dx\)
\(\displaystyle -10e^{-\frac{3}{2}} = -\frac{1}{2} \int_3^{\infty} f(x)e^{-x/2} \, dx + \int_3^{\infty} f'(x)e^{-x/2} \, dx\)
\(\displaystyle -10e^{-\frac{3}{2}} = 2 + \int_3^{\infty} f'(x)e^{-x/2} \, dx\)
\(\displaystyle -\left(2 + 10e^{-\frac{3}{2}}\right) = \int_3^{\infty} f'(x)e^{-x/2} \, dx\)