distance formula

lor15

New member
Joined
Nov 6, 2005
Messages
4
Heres the question...

Determine whether triangle DEF is congruent to triangle PQR given the corrdinates of the vertices. Explain.

Heres the coordinates...

D(-6,1), E(4,-1), F(-2,-5), P(2,-2), Q(5,-4), R(0,-5)

Now how do i plug these in th distance formula?¿?

ok never mind...my friend taught me how to do it
 
\(\displaystyle d[(a,b),(p,q)] = \sqrt {\left( {a - p} \right)^2 + \left( {b - q} \right)^2 }
\\)
 
Hello, lor15!

Have you never ever used the Distance Formula before?

Given two points: P(x1,y1)\displaystyle P(x_1,y_1) and Q(x2,y2)\displaystyle Q(x_2,y_2), the distance PQ is given by:

. . . . . . . . . . \(\displaystyle PQ\;=\;\sqrt{(x_2\,-\,x_1)^2\:+\:(y_2\,-\,y_1)^2}\)



Determine whether triangle DEF is congruent to triangle PQR, given the coordinates of the vertices. Explain.

D(-6,1), E(4,-1), F(-2,-5), P(2,-2), Q(5,-4), R(0,-5)

Now how do i plug these in the distance formula?
Given: D(6,1),  E(4,1)\displaystyle D(-6,1),\;E(4,-1)

. . DE  =  [4(6)]2+[11]2=102+22=100+4=  104\displaystyle DE\;=\;\sqrt{[4\,-\,(-6)]^2\,+\,[-1\,-\,1]^2}\:=\:\sqrt{10^2\,+\,2^2} \:=\:\sqrt{100\,+\,4}\:=\;\sqrt{104}


Given: E(4,1),  F(2,4)\displaystyle E(4,-1),\;F(-2,-4)

. . EF  =  [24]2+[5(1)]2=(6)2+(4)2=36+16=52\displaystyle EF\;=\;\sqrt{[-2\,-\,4]^2\,+\,[-5\,-\,(-1)]^2} \:=\:\sqrt{(-6)^2\,+\,(-4)^2}\:=\:\sqrt{36\,+\,16}\:=\:\sqrt{52}


Given: D(6,1),  F(2,5)\displaystyle D(-6,1),\;F(-2,-5)

. . DF  =  [2(6)2+[51]2=42+(6)2=16+36=52\displaystyle DF\;=\;\sqrt{[-2\,-\,(-6)^2\,+\,[-5\,-\,1]^2}\:=\:\sqrt{4^2\,+\,(-6)^2}\:=\:\sqrt{16\,+\,36} \:=\:\sqrt{52}


Now do the same for triangle PQR.

[You might note that triangle DEF is isoceles.
If you look further, you'll see that DEF is a right triangle.]
 
Top