Disproving Lim x->2 (x^2 -1) = 3

Jaskaran

Junior Member
Joined
May 5, 2006
Messages
67
From the limit laws, we know that lim x->2 (x^2 - 1) = 3. Finding a number ? such that if 0<|x-2|<? then |(x^2 - 1) - 3| < 0.2

-0.2 <|(x^2 - 1) - 3| < 0.2
14/5 <(x^2 -1)<16/5
19/5 < x^2 < 21/5
1.949 < x < 2.049
1.949 - 2 < x - 2 < 2.049 - 2
-.0506 < x < 0.0493

Then 0<|x-2|<?

? ~ 0.0493 or any smaller positive number.

BUT this does NOT prove that Lim x->2 (x^2 -1) = 3

Why?
 
What is the definition of a limit?

ϵ>0,δ...\displaystyle \forall\epsilon>0,\,\exists\delta...

But the fake "proof" only checks ϵ=0.2\displaystyle \epsilon=0.2.

Has it proven that for all epsilon, there exists a delta such that bla bla bla?
 
(x21)3=x24=x+2x2\displaystyle |(x^{2}-1)-3|=|x^{2}-4|=|x+2||x-2|

If we restrict δ\displaystyle {\delta} so that δ1\displaystyle {\delta}\leq 1, then

x2<1\displaystyle |x-2|<1

1<x2<1\displaystyle -1<x-2<1

1<x<3\displaystyle 1<x<3

3<x+2<5\displaystyle 3<x+2<5

which implies:

x+2<5\displaystyle |x+2|<5

x+2x25x2\displaystyle |x+2||x-2|\leq 5|x-2|

   (x21)3<ϵ\displaystyle \therefore \;\ |(x^{2}-1)-3|<{\epsilon}

if 5x2<ϵ\displaystyle 5|x-2|<{\epsilon}

or if x2<ϵ5\displaystyle |x-2|<\frac{\epsilon}{5}

So, δ=min(ϵ5,1)\displaystyle {\delta}=min(\frac{\epsilon}{5},1)
 
Top