Prove there are no positive integer solutions to x^2+x+1=y^2 by contradiction.
All I got was that up to was realizing
x^2+x=y^2-1
x(x+1)=(y-1)(y+1)
but I got stuck at this bit, not sure what to do next and how to get the solution... can anyone help please?
All I got was that up to was realizing
x^2+x=y^2-1
x(x+1)=(y-1)(y+1)
but I got stuck at this bit, not sure what to do next and how to get the solution... can anyone help please?