salvatorekate95
New member
- Joined
- Sep 20, 2014
- Messages
- 9
Translate into English the following first-order formulae and determine which of them represent true propositions when interpreted in R:
\(\displaystyle \mbox{1) }\, \forall x\, (x\, =\, x^2\, \rightarrow\, x\, <\, 0)\)
\(\displaystyle \mbox{2) }\, \forall x\, (x\, >\, 0\, \rightarrow\, x^2\, >\, x)\)
\(\displaystyle \mbox{3) }\, \forall x\, \left(x\, =\, 0\, \lor\, \lnot(x\, +\, x\, =\, x)\right)\)
\(\displaystyle \mbox{4) }\, \exists x \forall y\, (x\, > y)\)
\(\displaystyle \mbox{5) }\, \forall x\, \forall y\, \left(x\, >\, y\, \rightarrow\, \exists z\, (x\, >\, z\, \land\, z\, >\, y)\right)\)
\(\displaystyle \mbox{1) }\, \forall x\, (x\, =\, x^2\, \rightarrow\, x\, <\, 0)\)
\(\displaystyle \mbox{2) }\, \forall x\, (x\, >\, 0\, \rightarrow\, x^2\, >\, x)\)
\(\displaystyle \mbox{3) }\, \forall x\, \left(x\, =\, 0\, \lor\, \lnot(x\, +\, x\, =\, x)\right)\)
\(\displaystyle \mbox{4) }\, \exists x \forall y\, (x\, > y)\)
\(\displaystyle \mbox{5) }\, \forall x\, \forall y\, \left(x\, >\, y\, \rightarrow\, \exists z\, (x\, >\, z\, \land\, z\, >\, y)\right)\)
Last edited by a moderator: