Discrete mathematics: first order (predicate) logic

salvatorekate95

New member
Joined
Sep 20, 2014
Messages
9
Translate into English the following first-order formulae and determine which of them represent true propositions when interpreted in R:

\(\displaystyle \mbox{1) }\, \forall x\, (x\, =\, x^2\, \rightarrow\, x\, <\, 0)\)

\(\displaystyle \mbox{2) }\, \forall x\, (x\, >\, 0\, \rightarrow\, x^2\, >\, x)\)

\(\displaystyle \mbox{3) }\, \forall x\, \left(x\, =\, 0\, \lor\, \lnot(x\, +\, x\, =\, x)\right)\)

\(\displaystyle \mbox{4) }\, \exists x \forall y\, (x\, > y)\)

\(\displaystyle \mbox{5) }\, \forall x\, \forall y\, \left(x\, >\, y\, \rightarrow\, \exists z\, (x\, >\, z\, \land\, z\, >\, y)\right)\)
 
Last edited by a moderator:
Translate into English the following first-order formulae and determine which of them represent true propositions when interpreted in R:

\(\displaystyle \mbox{1) }\, \forall x\, (x\, =\, x^2\, \rightarrow\, x\, <\, 0)\)

\(\displaystyle \mbox{2) }\, \forall x\, (x\, >\, 0\, \rightarrow\, x^2\, >\, x)\)

\(\displaystyle \mbox{3) }\, \forall x\, \left(x\, =\, 0\, \lor\, \lnot(x\, +\, x\, =\, x)\right)\)

\(\displaystyle \mbox{4) }\, \exists x \forall y\, (x\, > y)\)

\(\displaystyle \mbox{5) }\, \forall x\, \forall y\, \left(x\, >\, y\, \rightarrow\, \exists z\, (x\, >\, z\, \land\, z\, >\, y)\right)\)
You seem to have the wrong idea. This is not a homework service. Post your work so we can help.

Here is #4. Some number is greater than every number.
 
Last edited:
No, that is what #4 says. #5 says "given any two numbers there exist a third number between them."
 
1. False. Example: x=1, 1^2=1 and 1>0
2. True. 2^2=4 and 4>2
3. I don't know what it says.
4. I think that it is false but I can't explain it.
5. True?
 
4. I think that it is false but I can't explain it.
5. True?
4. Is there a number that is greater that every number?

5. Suppose \(\displaystyle x<y\) then
\(\displaystyle \begin{align*} \dfrac{x}{2}&<\dfrac{y}{2}….(1)\text{divide by two}\\\dfrac{x+y}{2}&<y….(2)\text{add y/2 to (1)} \\x&<\dfrac{x+y}{2}….(3)\text{add x/2 to (1)} \\x&<\dfrac{x+y}{2}<y….(4)\text{combine 2 & 3 }\end{align*}\)
 
1. False. Example: x=1, 1^2=1 and 1>0
2. True. 2^2=4 and 4>2
3. I don't know what it says.
4. I think that it is false but I can't explain it.
5. True?

You need to learn the notation
\(\displaystyle \exists\text { x is 'there exists an x'}\)
\(\displaystyle \forall x\text { is 'for all x'}\)
∧ is the logical 'and'
∨ is the logical 'or'
¬ is the logical 'not'
\(\displaystyle >\text{ is the 'greater than' sign}\)
and so forth.

1. o.k.
2. What about \(\displaystyle \frac{1}{2}\)
3. see below
4. consider y + 1
5. consider \(\displaystyle \frac{x+y}{2}\)

[FONT=MathJax_Main]3) [/FONT][FONT=MathJax_Main]∀[/FONT][FONT=MathJax_Math]x[/FONT][FONT=MathJax_Main]([/FONT][FONT=MathJax_Math]x[/FONT][FONT=MathJax_Main]=[/FONT][FONT=MathJax_Main]0[/FONT][FONT=MathJax_Main]∨[/FONT][FONT=MathJax_Main]¬[/FONT][FONT=MathJax_Main]([/FONT][FONT=MathJax_Math]x[/FONT][FONT=MathJax_Main]+[/FONT][FONT=MathJax_Math]x[/FONT][FONT=MathJax_Main]=[/FONT][FONT=MathJax_Math]x[/FONT][FONT=MathJax_Main])[/FONT][FONT=MathJax_Main])[/FONT]
[FONT=MathJax_Main]∀[/FONT][FONT=MathJax_Math]x For all x[/FONT][FONT=MathJax_Main]
[/FONT][FONT=MathJax_Math]x[/FONT][FONT=MathJax_Main]=[/FONT][FONT=MathJax_Main]0 either x is 0
[/FONT][FONT=MathJax_Main]∨ or
[/FONT][FONT=MathJax_Main]¬[/FONT][FONT=MathJax_Main]([/FONT][FONT=MathJax_Math]x[/FONT][FONT=MathJax_Main]+[/FONT][FONT=MathJax_Math]x[/FONT][FONT=MathJax_Main]=[/FONT][FONT=MathJax_Math]x[/FONT][FONT=MathJax_Main])[/FONT] it is not the case that x+x is equal to x
 
4. Is there a number that is greater that every number?

5. Suppose \(\displaystyle x<y\) then
\(\displaystyle \begin{align*} \dfrac{x}{2}&<\dfrac{y}{2}….(1)\text{divide by two}\\\dfrac{x+y}{2}&<y….(2)\text{add y/2 to (1)} \\x&<\dfrac{x+y}{2}….(3)\text{add x/2 to (1)} \\x&<\dfrac{x+y}{2}<y….(4)\text{combine 2 & 3 }\end{align*}\)


4). In that case, 4 is false. There is not a real number that is greater than every number.

5). So it is true.
Example:
x=1 y=2
(1+2)2=1.5
1<1.5<2
 
You need to learn the notation
\(\displaystyle \exists\text { x is 'there exists an x'}\)
\(\displaystyle \forall x\text { is 'for all x'}\)
∧ is the logical 'and'
∨ is the logical 'or'
¬ is the logical 'not'
\(\displaystyle >\text{ is the 'greater than' sign}\)
and so forth.

1. o.k.
2. What about \(\displaystyle \frac{1}{2}\)
3. see below
4. consider y + 1
5. consider \(\displaystyle \frac{x+y}{2}\)

[FONT=MathJax_Main]3) [/FONT][FONT=MathJax_Main]∀[/FONT][FONT=MathJax_Math]x[/FONT][FONT=MathJax_Main]([/FONT][FONT=MathJax_Math]x[/FONT][FONT=MathJax_Main]=[/FONT][FONT=MathJax_Main]0[/FONT][FONT=MathJax_Main]∨[/FONT][FONT=MathJax_Main]¬[/FONT][FONT=MathJax_Main]([/FONT][FONT=MathJax_Math]x[/FONT][FONT=MathJax_Main]+[/FONT][FONT=MathJax_Math]x[/FONT][FONT=MathJax_Main]=[/FONT][FONT=MathJax_Math]x[/FONT][FONT=MathJax_Main])[/FONT][FONT=MathJax_Main])[/FONT]
[FONT=MathJax_Main]∀[/FONT][FONT=MathJax_Math]x For all x[/FONT][FONT=MathJax_Main]
[/FONT][FONT=MathJax_Math]x[/FONT][FONT=MathJax_Main]=[/FONT][FONT=MathJax_Main]0 either x is 0
[/FONT][FONT=MathJax_Main]∨ or
[/FONT][FONT=MathJax_Main]¬[/FONT][FONT=MathJax_Main]([/FONT][FONT=MathJax_Math]x[/FONT][FONT=MathJax_Main]+[/FONT][FONT=MathJax_Math]x[/FONT][FONT=MathJax_Main]=[/FONT][FONT=MathJax_Math]x[/FONT][FONT=MathJax_Main])[/FONT] it is not the case that x+x is equal to x



2. If x=1/2, then it is false. 0.5>0.25


3. if x=1 then [FONT=MathJax_Main]¬[/FONT][FONT=MathJax_Main]([/FONT][FONT=MathJax_Math]x[/FONT][FONT=MathJax_Main]+[/FONT][FONT=MathJax_Math]x[/FONT][FONT=MathJax_Main]=[/FONT][FONT=MathJax_Math]x[/FONT][FONT=MathJax_Main]) [/FONT]true.
if x=0 then 0+0=0. In that case 3 must be false?
 
Last edited:
4). In that case, 4 is false. There is not a real number that is greater than every number.

5). So it is true.
Example:
x=1 y=2
(1+2)2=1.5
1<1.5<2

4) \(\displaystyle \exists x \forall y\, (x\, > y)\)
Given any real number y, is x = y+1 greater than y?

5) True, that is an example. However giving an example (or a 1000 examples) of something doesn't prove it is true for everything. Fortunately, giving an example where it is false does prove that it is not true for everything.

 

4) \(\displaystyle \exists x \forall y\, (x\, > y)\)
Given any real number y, is x = y+1 greater than y?

5) True, that is an example. However giving an example (or a 1000 examples) of something doesn't prove it is true for everything. Fortunately, giving an example where it is false does prove that it is not true for everything.




4) If x=y+1, so x is greater than y. And then 4 is true.

But 5 is true, right?
 
4) If x=y+1, so x is greater than y. And then 4 is true.

But 5 is true, right?
5 is true but you didn't prove it with just the example. You need to do something like the following
x < y => x + y < 2 y => (x+y)/2 < y
and similarly for the other side
x < y => 2 x < x + y => x < (x+y)/2
 
Last edited:
Yes, 5 is true but can you say why it is true? Can you give a proof. A "counter-example", a single example in which a statement if false is sufficient to prove that it is not always true. But a single example will not prove it is always true!

If x> y, can you write a formula for z, depending only on x and y? That would prove that such a z always exists.
 
Top