Discrete math problem

How would I begin to show that if
A~N then AxA~N
Because ANA\sim\mathbb{N} there is a bijection f:ANf: A\to \mathbb{N}.
If (x,y)A×A(x,y)\in A\times A then (nxN)(nyN)[f(x)=nxf(y)=ny](\exists n_x\in\mathbb{N})\wedge (\exists n_y\in\mathbb{N})[f(x)=n_x\wedge f(y)=n_y]
Now define A×AN×NA\times A\to\mathbb{N}\times\mathbb{N} by Φ[(x,y)]=(nx,ny)\Phi[(x,y)]=(n_x,n_y)
Can you finish?
 
Top