I am at a complete loss at the math that is going on in these questions
5. Find the smallest integer value of N such that f (x) = O (xN ).
. . .\(\displaystyle \mbox{(a) }\, f(x)\, =\, x^7\, -\, 150\, x^6\, +\, 3\, x^3\, +\, 111\)
. . .\(\displaystyle \mbox{(b) }\, f(x)\, =\, \dfrac{x^3\, +\, 2\, x^2}{x^4\, +\, x^2\, +\, 1}\)
. . .\(\displaystyle \mbox{(c) }\, f(x)\, =\, \lceil {x} \rceil\)
. . .\(\displaystyle \mbox{(d) }\, f(x)\, =\, \lfloor {x} \rfloor\)
Let's look at question B for now.
The answer to that question is this below:
. . .\(\displaystyle \mbox{(b) }\, f(x) = \dfrac{x^3\, +\, 2\, x^2}{x^4\, +\, x^2\, +\, 1}:\, \mbox{ for }\, x\, \geq\, 1,\, \mbox{ we have:}\)
. . . . .\(\displaystyle \big| f(x) \big|\, \leq\, \dfrac{x^3\, +\, 2\, x^2}{x^4}\, \leq\, \dfrac{x^3\, +\, 2\, x^3}{x^4}\, =\, \dfrac{3x^3}{x^4}\, =\, 3\, x^{-1}\)
. . .\(\displaystyle \mbox{so }\, N\, =\, -1\, \mbox{ is the smallest integer that will do.}\)
How did we come to this conclusion? What happened to the denominator of the function to change it into x^4?
5. Find the smallest integer value of N such that f (x) = O (xN ).
. . .\(\displaystyle \mbox{(a) }\, f(x)\, =\, x^7\, -\, 150\, x^6\, +\, 3\, x^3\, +\, 111\)
. . .\(\displaystyle \mbox{(b) }\, f(x)\, =\, \dfrac{x^3\, +\, 2\, x^2}{x^4\, +\, x^2\, +\, 1}\)
. . .\(\displaystyle \mbox{(c) }\, f(x)\, =\, \lceil {x} \rceil\)
. . .\(\displaystyle \mbox{(d) }\, f(x)\, =\, \lfloor {x} \rfloor\)
Let's look at question B for now.
The answer to that question is this below:
. . .\(\displaystyle \mbox{(b) }\, f(x) = \dfrac{x^3\, +\, 2\, x^2}{x^4\, +\, x^2\, +\, 1}:\, \mbox{ for }\, x\, \geq\, 1,\, \mbox{ we have:}\)
. . . . .\(\displaystyle \big| f(x) \big|\, \leq\, \dfrac{x^3\, +\, 2\, x^2}{x^4}\, \leq\, \dfrac{x^3\, +\, 2\, x^3}{x^4}\, =\, \dfrac{3x^3}{x^4}\, =\, 3\, x^{-1}\)
. . .\(\displaystyle \mbox{so }\, N\, =\, -1\, \mbox{ is the smallest integer that will do.}\)
How did we come to this conclusion? What happened to the denominator of the function to change it into x^4?
Last edited by a moderator: