I wonder if this can be solved by expressing them through a combination of derivatives of [imath]\Gamma^2[/imath] and [imath]\Gamma[/imath] ?
To make this more readable for myself and, partially, as a public service, I've rewritten the equation replacing [imath]\Gamma[/imath] with pedestrian [imath]y[/imath]:
[math]y^{\prime\prime\prime\prime}
+ 2y^{\prime\prime\prime} - 40y^{\prime\prime}+64y^\prime
+3{y^{\prime\prime}}^2 + 6y^{\prime\prime}y^\prime
-80y^{\prime\prime} +
40 y^{\prime\prime} y +
192 y^\prime y = 0[/math]I've also written down -- out of sheer altruism -- expressions for the first four derivatives of [imath]y^2[/imath]:
[math](y^2)^\prime = 2y^\prime y[/math][math]\frac{1}{2}(y^2)^{\prime\prime} = y^{\prime\prime} y + {y^\prime}^2[/math][math]\frac{1}{2}(y^2)^{\prime\prime\prime}
=
y^{\prime\prime\prime}y
+ 3y^{\prime\prime}y^{\prime}[/math][math]\frac{1}{2}(y^2)^{\prime\prime\prime\prime}
=
y^{\prime\prime\prime\prime}y
+
4y^{\prime\prime\prime}y^\prime
+
3{y^{\prime\prime}}^2[/math]Disclaimer: I'll be surprised if the above formulas don't have any typos, so be forewarned.