How would one find the integral of e^(-x^2) from negative infinity to positive infinity?
T Trenters4325 Junior Member Joined Apr 8, 2006 Messages 122 May 24, 2006 #1 How would one find the integral of e^(-x^2) from negative infinity to positive infinity?
J JakeD Junior Member Joined Apr 28, 2006 Messages 177 May 24, 2006 #2 See http://en.wikipedia.org/wiki/Gaussian_integral.
G galactus Super Moderator Staff member Joined Sep 28, 2005 Messages 7,216 May 24, 2006 #3 Here's one of the best ways I've seen: \(\displaystyle \L\\\left(\int_{-\infty}^{\infty}e^{-x^{2}}dx\right)^{2}\) \(\displaystyle \L\\=\int_{-\infty}^{\infty}e^{-x^{2}}dx\int_{-\infty}^{\infty}e^{-y^{2}}dy\) \(\displaystyle \L\\=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{-x^{2}}e^{-y^{2}}dydx\) \(\displaystyle \L\\=\int_{0}^{\infty}\int_{0}^{2{\pi}}e^{-r^{2}}d{\theta}dr\) \(\displaystyle \L\\=\int_{0}^{2{\pi}}d{\theta}\int_{0}^{\infty}e^{-r^{2}}rdr\) A little u-substitution: \(\displaystyle u=r^{2}\) and \(\displaystyle \frac{du}{2}=rdr\) \(\displaystyle \L\\=2{\pi}\int_{0}^{\infty}\frac{e^{-u}}{2}du={\pi}\) which gives: \(\displaystyle \L\\\int_{-\infty}^{\infty}e^{-x^{2}}dx=\sqrt{\pi}\)
Here's one of the best ways I've seen: \(\displaystyle \L\\\left(\int_{-\infty}^{\infty}e^{-x^{2}}dx\right)^{2}\) \(\displaystyle \L\\=\int_{-\infty}^{\infty}e^{-x^{2}}dx\int_{-\infty}^{\infty}e^{-y^{2}}dy\) \(\displaystyle \L\\=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{-x^{2}}e^{-y^{2}}dydx\) \(\displaystyle \L\\=\int_{0}^{\infty}\int_{0}^{2{\pi}}e^{-r^{2}}d{\theta}dr\) \(\displaystyle \L\\=\int_{0}^{2{\pi}}d{\theta}\int_{0}^{\infty}e^{-r^{2}}rdr\) A little u-substitution: \(\displaystyle u=r^{2}\) and \(\displaystyle \frac{du}{2}=rdr\) \(\displaystyle \L\\=2{\pi}\int_{0}^{\infty}\frac{e^{-u}}{2}du={\pi}\) which gives: \(\displaystyle \L\\\int_{-\infty}^{\infty}e^{-x^{2}}dx=\sqrt{\pi}\)