differentiation

You can use the product rule:

Dx[1x61x2]=Dx[1x6](1x2)+(1x6)Dx[1x2]\displaystyle D_x[\frac{1}{x-6} \cdot \frac{1}{x-2}] = D_x[\frac{1}{x-6}](\frac{1}{x-2}) + (\frac{1}{x-6})D_x[\frac{1}{x-2}]

=1(x6)2(x2)+1(x6)(x2)2=2x+8(x6)2(x2)2\displaystyle = \frac{-1}{(x-6)^2(x-2)} + \frac{-1}{(x-6)(x-2)^2} = \frac{-2x+8}{(x-6)^2(x-2)^2}


Or, you may multiply it out and use the chain rule:

Dx[1x61x2]=Dx[(x28x+12)1]\displaystyle D_x[\frac{1}{x-6} \cdot \frac{1}{x-2}] = D_x[(x^2-8x+12)^{-1}]

=(x28x+12)2(2x8)=2x8(x28x+12)2\displaystyle = -(x^2-8x+12)^{-2} \cdot (2x-8) = -\frac{2x-8}{(x^2-8x+12)^2}
 
Another similar but different representation of the same way:

Dx[1(x6)(x2)]\displaystyle D_x\left[\frac{1}{(x-6)(x-2)}\right ]

=14Dx[1(x6)1(x2)]\displaystyle = \, \frac{1}{4} \cdot D_x\left[\frac{1}{(x-6)} - \frac{1}{(x-2)}\right ]

=14[1(x2)21(x6)2]\displaystyle = \, \frac{1}{4} \cdot\left[\frac{1}{(x-2)^2} \, - \, \frac{1}{(x-6)^2}\right ]

Simplify further if needed.....
 
Top