how do i get the gradient function of 1/((x-6)(x-2))? where does the power of -1 come in?
R red and white kop! Junior Member Joined Jun 15, 2009 Messages 231 Aug 14, 2009 #1 how do i get the gradient function of 1/((x-6)(x-2))? where does the power of -1 come in?
D daon Senior Member Joined Jan 27, 2006 Messages 1,284 Aug 14, 2009 #2 You can use the product rule: Dx[1x−6⋅1x−2]=Dx[1x−6](1x−2)+(1x−6)Dx[1x−2]\displaystyle D_x[\frac{1}{x-6} \cdot \frac{1}{x-2}] = D_x[\frac{1}{x-6}](\frac{1}{x-2}) + (\frac{1}{x-6})D_x[\frac{1}{x-2}]Dx[x−61⋅x−21]=Dx[x−61](x−21)+(x−61)Dx[x−21] =−1(x−6)2(x−2)+−1(x−6)(x−2)2=−2x+8(x−6)2(x−2)2\displaystyle = \frac{-1}{(x-6)^2(x-2)} + \frac{-1}{(x-6)(x-2)^2} = \frac{-2x+8}{(x-6)^2(x-2)^2}=(x−6)2(x−2)−1+(x−6)(x−2)2−1=(x−6)2(x−2)2−2x+8 Or, you may multiply it out and use the chain rule: Dx[1x−6⋅1x−2]=Dx[(x2−8x+12)−1]\displaystyle D_x[\frac{1}{x-6} \cdot \frac{1}{x-2}] = D_x[(x^2-8x+12)^{-1}]Dx[x−61⋅x−21]=Dx[(x2−8x+12)−1] =−(x2−8x+12)−2⋅(2x−8)=−2x−8(x2−8x+12)2\displaystyle = -(x^2-8x+12)^{-2} \cdot (2x-8) = -\frac{2x-8}{(x^2-8x+12)^2}=−(x2−8x+12)−2⋅(2x−8)=−(x2−8x+12)22x−8
You can use the product rule: Dx[1x−6⋅1x−2]=Dx[1x−6](1x−2)+(1x−6)Dx[1x−2]\displaystyle D_x[\frac{1}{x-6} \cdot \frac{1}{x-2}] = D_x[\frac{1}{x-6}](\frac{1}{x-2}) + (\frac{1}{x-6})D_x[\frac{1}{x-2}]Dx[x−61⋅x−21]=Dx[x−61](x−21)+(x−61)Dx[x−21] =−1(x−6)2(x−2)+−1(x−6)(x−2)2=−2x+8(x−6)2(x−2)2\displaystyle = \frac{-1}{(x-6)^2(x-2)} + \frac{-1}{(x-6)(x-2)^2} = \frac{-2x+8}{(x-6)^2(x-2)^2}=(x−6)2(x−2)−1+(x−6)(x−2)2−1=(x−6)2(x−2)2−2x+8 Or, you may multiply it out and use the chain rule: Dx[1x−6⋅1x−2]=Dx[(x2−8x+12)−1]\displaystyle D_x[\frac{1}{x-6} \cdot \frac{1}{x-2}] = D_x[(x^2-8x+12)^{-1}]Dx[x−61⋅x−21]=Dx[(x2−8x+12)−1] =−(x2−8x+12)−2⋅(2x−8)=−2x−8(x2−8x+12)2\displaystyle = -(x^2-8x+12)^{-2} \cdot (2x-8) = -\frac{2x-8}{(x^2-8x+12)^2}=−(x2−8x+12)−2⋅(2x−8)=−(x2−8x+12)22x−8
D Deleted member 4993 Guest Aug 14, 2009 #3 Another similar but different representation of the same way: Dx[1(x−6)(x−2)]\displaystyle D_x\left[\frac{1}{(x-6)(x-2)}\right ]Dx[(x−6)(x−2)1] = 14⋅Dx[1(x−6)−1(x−2)]\displaystyle = \, \frac{1}{4} \cdot D_x\left[\frac{1}{(x-6)} - \frac{1}{(x-2)}\right ]=41⋅Dx[(x−6)1−(x−2)1] = 14⋅[1(x−2)2 − 1(x−6)2]\displaystyle = \, \frac{1}{4} \cdot\left[\frac{1}{(x-2)^2} \, - \, \frac{1}{(x-6)^2}\right ]=41⋅[(x−2)21−(x−6)21] Simplify further if needed.....
Another similar but different representation of the same way: Dx[1(x−6)(x−2)]\displaystyle D_x\left[\frac{1}{(x-6)(x-2)}\right ]Dx[(x−6)(x−2)1] = 14⋅Dx[1(x−6)−1(x−2)]\displaystyle = \, \frac{1}{4} \cdot D_x\left[\frac{1}{(x-6)} - \frac{1}{(x-2)}\right ]=41⋅Dx[(x−6)1−(x−2)1] = 14⋅[1(x−2)2 − 1(x−6)2]\displaystyle = \, \frac{1}{4} \cdot\left[\frac{1}{(x-2)^2} \, - \, \frac{1}{(x-6)^2}\right ]=41⋅[(x−2)21−(x−6)21] Simplify further if needed.....