differentiation question

mathhelp1a

New member
Joined
Oct 4, 2009
Messages
40
f(t) = (t^2 - 1 ) ^5/2 (t^3 + 5)

is this correct differentiation : (t^2-1 )^5/2 (3t^2) + (t^3 + 5) [ 5/2 (t^2-1) ^ 3/2 (2t)]

simplify: (t^2-1) ^ 3/2 ( t^3 +5 ) (17t^4 -3t^2 + 35t )
 
Hello, mathhelp1a!

f(t)=(t21)52(t3+5)\displaystyle f(t) \:=\: (t^2 - 1)^{\frac{5}{2}}(t^3 + 5)

Is this correct differentiation?   f(t)  =  (t21)52(3t2)+(t3+5)52(t21)32(2t)\displaystyle \text{Is this correct differentiation? }\;f'(t) \;=\;(t^2-1 )^{\frac{5}{2}}(3t^2) + (t^3 + 5)\cdot\frac{5}{2}(t^2-1)^{\frac{3}{2}}(2t) . . . . Yes!

Simplify:   (t21)32(t3+5)(17t43t2+35t)\displaystyle \text{Simplify: }\;(t^2-1)^{\frac{3}{2}}(t^3 +5 )(17t^4 -3t^2 + 35t ) . . . . no

We have:   3t2(t21)52+5t(t21)32(t3+5)\displaystyle \text{We have: }\;3t^2(t^2-1)^{\frac{5}{2}} + 5t(t^2-1)^{\frac{3}{2}}(t^3+5)


Factor:   f(t)  =  t(t21)32[3t(t21)+5(t3+5)]\displaystyle \text{Factor: }\;f'(t) \;=\;t(t^2-1)^{\frac{3}{2}}\,\bigg[3t(t^2-1) + 5(t^3+5)\bigg]

. . . . . . . . . .=  t(t21)32[3t33t+5t3+25]\displaystyle = \;t(t^2-1)^{\frac{3}{2}}\,\bigg[3t^3 - 3t + 5t^3 + 25\bigg]

. . . . . . . . . .=  t(t21)32(8t33t+25)\displaystyle = \;t(t^2-1)^{\frac{3}{2}}(8t^3 - 3t + 25)
 
can you explain the rule that you used
how did you get t in t (t^2...

also where did you get the 3t and 5
 
Top