I don't know why I'm not getting the second derivative questions right.
1. a) Find the slope of the tangent line to the parametric curve x = t/2, y = t^2 + 1 at t = -1 and t = 1 without eliminating the parameter.
b) Check your answers in part (a) by eliminating the parameter and differentiating an appropriate function of x.
dy/dx = 2t/(1/2) = 4t
y'(1) = 4
y'(-1) = -4
x = t/2, y - 1= t^2
(2x)^2 = t^2
y - 1 = 4x^2
y = 4x^2 + 1
5 - 10. Find dy/dx and d^2y/dx^2 at the given point without eliminating the parameter.
5. x = t^1/2, y = 2t + 4; t = 1
dy/dx = 2/(1/2)t^(-1/2) = 4t^1/2
y'(1) = 4
y'' = 4
y''(1) = 2
7. x = sec t, y = tan t; t = pi/3
dy/dx = csc x
y'(pi/3) = 2/3^1/2
y''= -1/(3 square root of 3)
9. x = theta + cos theta, y = 1 + sin theta; theta = pi/6
dy/dx = cos theta/1 - sin theta
y'(pi/6) = 3^1/2
y'' =
1. a) Find the slope of the tangent line to the parametric curve x = t/2, y = t^2 + 1 at t = -1 and t = 1 without eliminating the parameter.
b) Check your answers in part (a) by eliminating the parameter and differentiating an appropriate function of x.
dy/dx = 2t/(1/2) = 4t
y'(1) = 4
y'(-1) = -4
x = t/2, y - 1= t^2
(2x)^2 = t^2
y - 1 = 4x^2
y = 4x^2 + 1
5 - 10. Find dy/dx and d^2y/dx^2 at the given point without eliminating the parameter.
5. x = t^1/2, y = 2t + 4; t = 1
dy/dx = 2/(1/2)t^(-1/2) = 4t^1/2
y'(1) = 4
y'' = 4
y''(1) = 2
7. x = sec t, y = tan t; t = pi/3
dy/dx = csc x
y'(pi/3) = 2/3^1/2
y''= -1/(3 square root of 3)
9. x = theta + cos theta, y = 1 + sin theta; theta = pi/6
dy/dx = cos theta/1 - sin theta
y'(pi/6) = 3^1/2
y'' =