differentiate the function f(x) = (sqrt x-1)

twizz

New member
Joined
Sep 15, 2006
Messages
1
can someone help me with this cal I problem?

differentiate the function by forming the difference quotient:

f (x+h) - f (x) /h

and taking the limit as h tends to 0.

f(x) = (sqrt x-1)
 
1) You must work on your notation.

Do you mean [sqrt(x) + 1] or [sqrt(x+1)]

You wrote "f (x+h) - f (x) /h ", but I'm almost certain you meant "[f(x+h) - f(x)]/h"

2) Well, do it. What does that f(x) notation mean?

If f(x) = sqrt(x+1), we have

[sqrt(x+h+1) - sqrt(x+1)]/h

I suggest multiplying numerator and denominator by [sqrt(x+h+1) + sqrt(x+1)].
 
Top