I need to differentiate:
\(\displaystyle \frac{{4x}}{{\sqrt {4x^2 - 1} }}\)
Here's what I get:
\(\displaystyle \frac{{\left( {4x^2 - 1} \right)^{\frac{1}{2}} 4 - 4x\frac{1}{2}\left( {4x^2 - 1} \right)^{\frac{{ - 1}}{2}} }}{{4x^2 - 1}}\)
Multiply that by this to get rid of fractions:
\(\displaystyle \frac{{4x^2 - 1}}{{4x^2 - 1}}\)
Gets me to here:
\(\displaystyle \frac{{4\left( {4x^2 - 1} \right)^{\frac{3}{2}} - 2x}}{{\left( {4x^2 - 1} \right)^2 }}\)
I'm not sure where to go from this point.
Am I ok up to here, and if so, where should I go from here?
\(\displaystyle \frac{{4x}}{{\sqrt {4x^2 - 1} }}\)
Here's what I get:
\(\displaystyle \frac{{\left( {4x^2 - 1} \right)^{\frac{1}{2}} 4 - 4x\frac{1}{2}\left( {4x^2 - 1} \right)^{\frac{{ - 1}}{2}} }}{{4x^2 - 1}}\)
Multiply that by this to get rid of fractions:
\(\displaystyle \frac{{4x^2 - 1}}{{4x^2 - 1}}\)
Gets me to here:
\(\displaystyle \frac{{4\left( {4x^2 - 1} \right)^{\frac{3}{2}} - 2x}}{{\left( {4x^2 - 1} \right)^2 }}\)
I'm not sure where to go from this point.
Am I ok up to here, and if so, where should I go from here?