Hi can someone check over my work? thanks
Differentiate
\(\displaystyle \L\ y= x^{3} e^{-x}\)
f(x)= \(\displaystyle \L\ x^{3}\)
f'(x)= \(\displaystyle \L\ 3x^{2}\)
g(x)=\(\displaystyle \L\ e^{-x}\)
g'(x)=\(\displaystyle \L\ e^{-x}*ln e*-1\)
dy/dx=\(\displaystyle \L\ (x^{3})(e^{-x}*ln e*-1)+(3x^{2})(e^{-x})\)
dy/dx=\(\displaystyle \L\ (x^{3})(-e^{-x})+(3x^{2})(e^{-x})\)
dy/dx=\(\displaystyle \L\ x^{2}e^{-x}(-x+3)\)
another question... the derivitive of ln e is \(\displaystyle \L\frac{1}{x}\) right?
Differentiate
\(\displaystyle \L\ y= x^{3} e^{-x}\)
f(x)= \(\displaystyle \L\ x^{3}\)
f'(x)= \(\displaystyle \L\ 3x^{2}\)
g(x)=\(\displaystyle \L\ e^{-x}\)
g'(x)=\(\displaystyle \L\ e^{-x}*ln e*-1\)
dy/dx=\(\displaystyle \L\ (x^{3})(e^{-x}*ln e*-1)+(3x^{2})(e^{-x})\)
dy/dx=\(\displaystyle \L\ (x^{3})(-e^{-x})+(3x^{2})(e^{-x})\)
dy/dx=\(\displaystyle \L\ x^{2}e^{-x}(-x+3)\)
another question... the derivitive of ln e is \(\displaystyle \L\frac{1}{x}\) right?