Please can you check the following differentials?
Differentiate with respect to x.
a) \(\displaystyle y = \cos ^3 x\tan 2x^2\)
This is what I got...
\(\displaystyle \frac{{dy}}{{dx}} = - 3\cos ^2 x\sin x.4\sec ^2 2x\)
b)\(\displaystyle y = \left( {\frac{{\tan ^2 2x}}{2} - x} \right)\sin x^3\)
My workings so far...
\(\displaystyle \begin{array}{l}
y = \left( {\frac{{\tan ^2 2x}}{2} - x} \right)\sin x^3 = \left( {\frac{1}{2}\tan ^2 2x - x} \right)\sin x^3 \\
\frac{{dy}}{{dx}} = \left( {\frac{1}{4}\tan 2x\sec ^2 2x - x} \right)3\sin x^2 \cos x \\ \end{array}\)
Is this right so far?
How would I go on to simplify further?
Thanks for your help
:?
Differentiate with respect to x.
a) \(\displaystyle y = \cos ^3 x\tan 2x^2\)
This is what I got...
\(\displaystyle \frac{{dy}}{{dx}} = - 3\cos ^2 x\sin x.4\sec ^2 2x\)
b)\(\displaystyle y = \left( {\frac{{\tan ^2 2x}}{2} - x} \right)\sin x^3\)
My workings so far...
\(\displaystyle \begin{array}{l}
y = \left( {\frac{{\tan ^2 2x}}{2} - x} \right)\sin x^3 = \left( {\frac{1}{2}\tan ^2 2x - x} \right)\sin x^3 \\
\frac{{dy}}{{dx}} = \left( {\frac{1}{4}\tan 2x\sec ^2 2x - x} \right)3\sin x^2 \cos x \\ \end{array}\)
Is this right so far?
How would I go on to simplify further?
Thanks for your help
:?