Please can you help simplify this one?
\(\displaystyle \L \b
y = \frac{{e^x }}{{e^x - e^{ - x} }}\)
\(\displaystyle \L u = e^x {\rm }u' = e^x\)
\(\displaystyle \L v = e^x - e^{ - x} {\rm }v' = e^x + e^{ - x}\)
\(\displaystyle \L \b
\frac{{dy}}{{dx}} = \frac{{e^x (e^x - e^{ - x} ) - e^x (e^x + e^{ - x} )}}{{(e^x + e^{ - x} )^2 }}\)
How do I simplify this ?
Thanks
\(\displaystyle \L \b
y = \frac{{e^x }}{{e^x - e^{ - x} }}\)
\(\displaystyle \L u = e^x {\rm }u' = e^x\)
\(\displaystyle \L v = e^x - e^{ - x} {\rm }v' = e^x + e^{ - x}\)
\(\displaystyle \L \b
\frac{{dy}}{{dx}} = \frac{{e^x (e^x - e^{ - x} ) - e^x (e^x + e^{ - x} )}}{{(e^x + e^{ - x} )^2 }}\)
How do I simplify this ?
Thanks