Is this answer correct please?
Differentiate the following wrt x:
\(\displaystyle \L y = \frac{{\ln (\sin ^2 3x)}}{{(1 - x)}}\)
\(\displaystyle \L u = \ln (\sin ^2 3x){\rm }u' = \left( {\frac{{3\sin 6x}}{{\sin ^2 3x}}} \right)\)
\(\displaystyle \L v = 1 - x{\rm }v' = - 1\)
\(\displaystyle \L \frac{{dy}}{{dx}} = \frac{{\left( {1 - x} \right)\left( {\frac{{3\sin 6x}}{{\sin ^2 3x}}} \right) + \ln (\sin ^2 3x)}}{{\left( {1 - x} \right)^2 }}\)
\(\displaystyle \L = \frac{{\left( {1 - x} \right)\left( {3\sin 6x} \right) + \ln (\sin ^2 3x)^2 }}{{\left( {1 - x} \right)^2 }}\)
Thanks for checking.
Differentiate the following wrt x:
\(\displaystyle \L y = \frac{{\ln (\sin ^2 3x)}}{{(1 - x)}}\)
\(\displaystyle \L u = \ln (\sin ^2 3x){\rm }u' = \left( {\frac{{3\sin 6x}}{{\sin ^2 3x}}} \right)\)
\(\displaystyle \L v = 1 - x{\rm }v' = - 1\)
\(\displaystyle \L \frac{{dy}}{{dx}} = \frac{{\left( {1 - x} \right)\left( {\frac{{3\sin 6x}}{{\sin ^2 3x}}} \right) + \ln (\sin ^2 3x)}}{{\left( {1 - x} \right)^2 }}\)
\(\displaystyle \L = \frac{{\left( {1 - x} \right)\left( {3\sin 6x} \right) + \ln (\sin ^2 3x)^2 }}{{\left( {1 - x} \right)^2 }}\)
Thanks for checking.