I'm studying my old tests for finals and have come across on that I got wrong and can't recall how to do it.
Show that the differential equation:
\(\displaystyle 2x{\rm }\ln {\rm y dx + }\left( {\frac{{x^2 }}{y}{\rm - }\sqrt[{}]{{\rm y}}} \right){\rm dy = 0}\)
I've shown that \(\displaystyle {\rm M}_{\rm y} {\rm = N}_{\rm x} {\rm } \Rightarrow {\rm }\frac{{{\rm 2x}}}{{\rm y}}{\rm = }\frac{{{\rm 2x}}}{{\rm y}}{\rm } \Rightarrow {\rm equality} \Rightarrow {\rm exact}\)
I'm having trouble remembering how to get the general solution:
\(\displaystyle x^2 {\rm ln y - }\frac{{\rm 2}}{{\rm 3}}{\rm y}^{\frac{{\rm 3}}{{\rm 2}}} {\rm = c}\)
I've started with this:
\(\displaystyle \begin{array}{l}
g(x,y) = \int {2x{\rm }\ln y{\rm }dx} {\rm + c(y)} \\
{\rm = lny x}^{\rm 2} {\rm + c(y)} \\
\end{array}\)
Anyone know how to get this? Thanks.
Show that the differential equation:
\(\displaystyle 2x{\rm }\ln {\rm y dx + }\left( {\frac{{x^2 }}{y}{\rm - }\sqrt[{}]{{\rm y}}} \right){\rm dy = 0}\)
I've shown that \(\displaystyle {\rm M}_{\rm y} {\rm = N}_{\rm x} {\rm } \Rightarrow {\rm }\frac{{{\rm 2x}}}{{\rm y}}{\rm = }\frac{{{\rm 2x}}}{{\rm y}}{\rm } \Rightarrow {\rm equality} \Rightarrow {\rm exact}\)
I'm having trouble remembering how to get the general solution:
\(\displaystyle x^2 {\rm ln y - }\frac{{\rm 2}}{{\rm 3}}{\rm y}^{\frac{{\rm 3}}{{\rm 2}}} {\rm = c}\)
I've started with this:
\(\displaystyle \begin{array}{l}
g(x,y) = \int {2x{\rm }\ln y{\rm }dx} {\rm + c(y)} \\
{\rm = lny x}^{\rm 2} {\rm + c(y)} \\
\end{array}\)
Anyone know how to get this? Thanks.