\(\displaystyle e^{x}cos^{2}(y)dx \ = \ (1-e^{x})dy\)
\(\displaystyle \frac{dy}{dx} \ = \ \frac{e^{x}cos^{2}(y)}{1-e^{x}}, \ remember \ this.\)
\(\displaystyle Now, \ this \ implies \ that \ \int\frac{dy}{cos^{2}(y)} \ = \ \int\frac{e^{x}}{1-e^{x}}dx\)
\(\displaystyle Hence, \ tan(y) \ = \ -ln|1-e^{x}|+C \ or \ y(x) \ = \ arctan[-ln|1-e^{x}|+C]\)
\(\displaystyle y(0) \ = \ arctan[-ln(0)+C] \ = \ \frac{\pi}{2}\)
\(\displaystyle Ergo, \ tan(\pi/2) \ = \ -ln(0)+C, \ \implies \ \infty \ = \ \infty \ +C, \ C \ = \ 0.\)
\(\displaystyle Therefore \ y(x) \ = \ arctan[-ln|1-e^{x}|]\)
\(\displaystyle Check: \ \frac{dy}{dx} \ = \ \frac{-e^{x}}{(e^{x}-1)((ln|1-e^{x}|)^{2}+1)} \ = \ \frac{-e^{x}}{(e^{x}-1)(tan^{2}(y)+1)}\)
\(\displaystyle \frac{dy}{dx} \ = \ \frac{-e^{x}}{(e^{x}-1)sec^{2}(y)} \ = \ \frac{e^{x}cos^{2}(y)}{1-e^{x}} \ QED\)