Differential equation: dy/dx + 3x^2 y = 6x^2 (2nd stage?)

roshan2004

New member
Joined
Oct 29, 2008
Messages
1
After multiplying the given differential equation by its integrating factor we get the first step,but I simply couldnot understand the second stage,pls explain it to me. The question and the steps are given on the attachment.
 

Attachments

  • differential[1].JPG
    differential[1].JPG
    14.2 KB · Views: 442
Re: Differential equation

roshan2004 said:
After multiplying the given differential equation by its integrating factor we get the first step,but I simply couldnot understand the second stage,pls explain it to me.
The question and the steps are given on the attachment.

The choice of integrating factor is made in such a way that - you get LHS as a "product function"

Differentiate LHS to see how it is equal to the line above.
 
Hello, roshan2004!

Evidently, you don't understand the purpose of an integrating factor.


Given: dydx+P(x) ⁣ ⁣y=Q(x)\displaystyle \text{Given: }\:\frac{dy}{dx} + P(x)\!\cdot\!y \:=\:Q(x)

The integrating factor is: I  =  eP(x)dx\displaystyle \text{The integrating factor is: }\:I \;=\;e^{\int P(x)\,dx}

Multiply through by I ⁣:I ⁣ ⁣dydx+I ⁣ ⁣P(x) ⁣ ⁣yderivative of Iy  =  I ⁣ ⁣Q(x)\displaystyle \text{Multiply through by }I\!:\quad \underbrace{I\!\cdot\!\frac{dy}{dx} + I\!\cdot\!P(x)\!\cdot\!y}_{\text{derivative of }I\cdot y} \;=\;I\!\cdot\! Q(x)

. . The left side is always the derivative of Iy\displaystyle \text{The left side is }always\text{ the derivative of }I\cdot y

So we have:   ddx(I ⁣ ⁣y)=I ⁣ ⁣Q(x)\displaystyle \text{So we have: }\;\frac{d}{dx}(I\!\cdot\!y) = I\!\cdot\!Q(x)

. . Then we integrate both sides . . . and solve for y.\displaystyle \text{Then we integrate both sides . . . and solve for }y.


~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

We have:   dydx+3x2y  =  6x2\displaystyle \text{We have: }\;\frac{dy}{dx} + 3x^2y \;=\;6x^2

Then:   I=e3x2dx=ex3\displaystyle \text{Then: }\;I \:=\:e^{\int3x^2dx} \:=\:e^{x^3}

Multiply through by I ⁣:ex3dydx+3x2ex3yderivative of ex3y  =  6x2ex3\displaystyle \text{Multiply through by }I\!:\quad \underbrace{e^{x^3}\frac{dy}{dx} + 3x^2e^{x^3}y}_{\text{derivative of }e^{x^3}y} \;=\;6x^2e^{x^3}

So we can write:   ddx(ex3y)  =  6x2ex3d(ex3y)  =  6x2ex3dx\displaystyle \text{So we can write: }\;\frac{d}{dx}\left(e^{x^3}y\right) \;=\;6x^2e^{x^3} \quad\Rightarrow\quad d\left(e^{x^3}y\right) \;=\;6x^2e^{x^3}dx

Integrate:   d(ex3y)  =  6x2ex3dx\displaystyle \text{Integrate: }\;\underbrace{\int d\left(e^{x^3}y\right)}_{\Downarrow} \;=\;\underbrace{\int 6x^2e^{x^3}dx}_{\Downarrow}
. . . . . . . . . . ex3y=2ex3+C\displaystyle e^{x^3}y \qquad=\qquad 2e^{x^3} + C


Divide by ex3y  =  2+Ce-x3\displaystyle \text{Divide by }e^{x^3}\:\quad\boxed{ y \;=\;2 + Ce^{\text{-}x^3}}

 
Top