Hello, roshan2004!
Evidently, you don't understand the purpose of an integrating factor.
\(\displaystyle \text{Given: }\:\frac{dy}{dx} + P(x)\!\cdot\!y \:=\:Q(x)\)
\(\displaystyle \text{The integrating factor is: }\:I \;=\;e^{\int P(x)\,dx}\)
\(\displaystyle \text{Multiply through by }I\!:\quad \underbrace{I\!\cdot\!\frac{dy}{dx} + I\!\cdot\!P(x)\!\cdot\!y}_{\text{derivative of }I\cdot y} \;=\;I\!\cdot\! Q(x)\)
. . \(\displaystyle \text{The left side is }always\text{ the derivative of }I\cdot y\)
\(\displaystyle \text{So we have: }\;\frac{d}{dx}(I\!\cdot\!y) = I\!\cdot\!Q(x)\)
. . \(\displaystyle \text{Then we integrate both sides . . . and solve for }y.\)
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
\(\displaystyle \text{We have: }\;\frac{dy}{dx} + 3x^2y \;=\;6x^2\)
\(\displaystyle \text{Then: }\;I \:=\:e^{\int3x^2dx} \:=\:e^{x^3}\)
\(\displaystyle \text{Multiply through by }I\!:\quad \underbrace{e^{x^3}\frac{dy}{dx} + 3x^2e^{x^3}y}_{\text{derivative of }e^{x^3}y} \;=\;6x^2e^{x^3}\)
\(\displaystyle \text{So we can write: }\;\frac{d}{dx}\left(e^{x^3}y\right) \;=\;6x^2e^{x^3} \quad\Rightarrow\quad d\left(e^{x^3}y\right) \;=\;6x^2e^{x^3}dx\)
\(\displaystyle \text{Integrate: }\;\underbrace{\int d\left(e^{x^3}y\right)}_{\Downarrow} \;=\;\underbrace{\int 6x^2e^{x^3}dx}_{\Downarrow}\)
. . . . . . . . . . \(\displaystyle e^{x^3}y \qquad=\qquad 2e^{x^3} + C\)
\(\displaystyle \text{Divide by }e^{x^3}\:\quad\boxed{ y \;=\;2 + Ce^{\text{-}x^3}}\)