Diferential Total

Chipset3600

New member
Joined
Dec 18, 2011
Messages
9
Question, is it correct??
Calculate the total differential of this function: \(\displaystyle u= arcsen\sqrt{\frac{xz}{y}}\)

1- respect of x:
\(\displaystyle \frac{\partial u}{\partial x}=\frac{zy}{{2y^{2}}\sqrt{\frac{xz}{y}\sqrt{1-\frac{xz}{y}}}}\)

2- respect of y: \(\displaystyle \frac{\partial u}{\partial y}=\frac{xz}{{2y^{2}}\sqrt{\frac{xz}{y}\sqrt{1-\frac{xz}{y}}}}\)

3- respect of z: \(\displaystyle \frac{\partial u}{\partial z}=\frac{xy}{{2y^{2}}\sqrt{\frac{xz}{y}\sqrt{1-\frac{xz}{y}}}}\)

int the formula:
\(\displaystyle :\partial u=\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}


final: \partial u=\frac{zy}{{2y^{2}}\sqrt{\frac{xz}{y}\sqrt{1-\frac{xz}{y}}}}+\frac{xz}{{2y^{2}}\sqrt{\frac{xz}{y}\sqrt{1-\frac{xz}{y}}}}+\frac{xy}{{2y^{2}}\sqrt{\frac{xz}{y}\sqrt{1-\frac{xz}{y}}}}\)



 
Question, is it correct??
Calculate the total differential of this function: \(\displaystyle u= arcsen\sqrt{\frac{xz}{y}}\)

1- respect of x:
\(\displaystyle \frac{\partial u}{\partial x}=\frac{zy}{{2y^{2}}\sqrt{\frac{xz}{y}\sqrt{1-\frac{xz}{y}}}}\)

2- respect of y: \(\displaystyle \frac{\partial u}{\partial y}=\frac{xz}{{2y^{2}}\sqrt{\frac{xz}{y}\sqrt{1-\frac{xz}{y}}}}\)

3- respect of z: \(\displaystyle \frac{\partial u}{\partial z}=\frac{xy}{{2y^{2}}\sqrt{\frac{xz}{y}\sqrt{1-\frac{xz}{y}}}}\)

int the formula:
\(\displaystyle :\ du=\frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy + \frac{\partial u}{\partial z} dz\)


final:\(\displaystyle \ du=\frac{zy \ dx}{{2y^{2}}\sqrt{\frac{xz}{y}\sqrt{1-\frac{xz}{y}}}}+\frac{xz \ dy}{{2y^{2}}\sqrt{\frac{xz}{y}\sqrt{1-\frac{xz}{y}}}}+\frac{xy \ dz}{{2y^{2}}\sqrt{\frac{xz}{y}\sqrt{1-\frac{xz}{y}}}}\)




Looks good - except as noted above
 
Top