Chipset3600
New member
- Joined
- Dec 18, 2011
- Messages
- 9
Question, is it correct??
Calculate the total differential of this function: \(\displaystyle u= arcsen\sqrt{\frac{xz}{y}}\)
1- respect of x: \(\displaystyle \frac{\partial u}{\partial x}=\frac{zy}{{2y^{2}}\sqrt{\frac{xz}{y}\sqrt{1-\frac{xz}{y}}}}\)
2- respect of y: \(\displaystyle \frac{\partial u}{\partial y}=\frac{xz}{{2y^{2}}\sqrt{\frac{xz}{y}\sqrt{1-\frac{xz}{y}}}}\)
3- respect of z: \(\displaystyle \frac{\partial u}{\partial z}=\frac{xy}{{2y^{2}}\sqrt{\frac{xz}{y}\sqrt{1-\frac{xz}{y}}}}\)
int the formula: \(\displaystyle :\partial u=\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}
final: \partial u=\frac{zy}{{2y^{2}}\sqrt{\frac{xz}{y}\sqrt{1-\frac{xz}{y}}}}+\frac{xz}{{2y^{2}}\sqrt{\frac{xz}{y}\sqrt{1-\frac{xz}{y}}}}+\frac{xy}{{2y^{2}}\sqrt{\frac{xz}{y}\sqrt{1-\frac{xz}{y}}}}\)
Calculate the total differential of this function: \(\displaystyle u= arcsen\sqrt{\frac{xz}{y}}\)
1- respect of x: \(\displaystyle \frac{\partial u}{\partial x}=\frac{zy}{{2y^{2}}\sqrt{\frac{xz}{y}\sqrt{1-\frac{xz}{y}}}}\)
2- respect of y: \(\displaystyle \frac{\partial u}{\partial y}=\frac{xz}{{2y^{2}}\sqrt{\frac{xz}{y}\sqrt{1-\frac{xz}{y}}}}\)
3- respect of z: \(\displaystyle \frac{\partial u}{\partial z}=\frac{xy}{{2y^{2}}\sqrt{\frac{xz}{y}\sqrt{1-\frac{xz}{y}}}}\)
int the formula: \(\displaystyle :\partial u=\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}
final: \partial u=\frac{zy}{{2y^{2}}\sqrt{\frac{xz}{y}\sqrt{1-\frac{xz}{y}}}}+\frac{xz}{{2y^{2}}\sqrt{\frac{xz}{y}\sqrt{1-\frac{xz}{y}}}}+\frac{xy}{{2y^{2}}\sqrt{\frac{xz}{y}\sqrt{1-\frac{xz}{y}}}}\)