\(\displaystyle a_n\, =\, \frac{h\, -\, 1}{h^2}\)
\(\displaystyle \lim_{h\rightarrow +\infty}\, a_n\, =\, \lim_{h\rightarrow +\infty}\, \frac{h\, -\, 1}{h^2}\, =\, \lim_{h\rightarrow +\infty}\, \frac{\frac{h}{h^2}\, -\, \frac{1}{h^2}}{\frac{h^2}{h^2}}\, = \frac{0\, -\, 0}{1}\, = \, 0\)
\(\displaystyle |a_n\, -\, L|\, <\, \epsilon\)
\(\displaystyle \left|\frac{h\,-\,1}{h^2}\,-\,0\right|\,<\,\epsilon\)
\(\displaystyle \left|\frac{h\,-\,1}{h^2}\right|\,=\,\frac{h\,-\,1}{h^2}\,=\,\frac{1}{h}\,-\,\frac{1}{h^2}\,<\,\frac{1}{h}\,<\,\epsilon\,\iff\,\frac{1}{\epsilon}\,<\,h\)
\(\displaystyle N\, =\, \left[\frac{1}{\epsilon}\right]\, +\, 1\)
\(\displaystyle N\, >\, \frac{1}{\epsilon}\)