Hi, I am having trouble with this question, can someone pleas check over my work? Thanks.
Determine the absolute maximum of y=x(r^2 + x^2)^ -2/3 on the interval xe[0,r], where r is a constant.
y=x(r^2 + x^2)^ -2/3
y’= (r^2+x^2)^ -2/3 + (x)[-2/3(r^2+x^2)•2x]
y’= (r^2+x^2)^ -2/3 + (x)[-4/3(r^2+x^2)]
y’= (r^2+x^2)^ -2/3 + (x)[-4/3r^2- 4/3x^2)]
y’= (r^2+x^2)^ -2/3 + -4/3r^2x- 4/3x^2x
0= (r^2+x^2)^ -2/3 + -4/3r^2x- 4/3x^2x
How do I factor this?
Thanks
Determine the absolute maximum of y=x(r^2 + x^2)^ -2/3 on the interval xe[0,r], where r is a constant.
y=x(r^2 + x^2)^ -2/3
y’= (r^2+x^2)^ -2/3 + (x)[-2/3(r^2+x^2)•2x]
y’= (r^2+x^2)^ -2/3 + (x)[-4/3(r^2+x^2)]
y’= (r^2+x^2)^ -2/3 + (x)[-4/3r^2- 4/3x^2)]
y’= (r^2+x^2)^ -2/3 + -4/3r^2x- 4/3x^2x
0= (r^2+x^2)^ -2/3 + -4/3r^2x- 4/3x^2x
How do I factor this?
Thanks