Apprentice123
New member
- Joined
- Sep 2, 2008
- Messages
- 22
Make sure the following subsets S are vector subspaces of the vector space V
Please check my answers
1) S={(x,y)/y=-x} V=\(\displaystyle R^2\)
u=(x1,-x1)
v=(x2,-x2)
u+v = (x1+x2,-x1-x2) = (x1+x2,-(x1+x2))
u+v E S
\(\displaystyle \alpha .u = \ alpha (x1,-x1) = ( \alpha x1,- \alpha x2 )\)
\(\displaystyle \alpha . u\) E S
Therefore, S is a vector subspace of V
2) S={(x,y,z)/y=z^2} V=R^3
u=(z1^2,y1,z1)
v=(z2^2,y2,z2)
u+v=
....
(z1^2+z2^2,y1+y2,z1+z2)
u+v Not E S
\(\displaystyle \alpha . u =\)
....
\(\displaystyle ( \alphaz1^2, \alpha y1, \alpha z1)\)
Not E S
Please check my answers
1) S={(x,y)/y=-x} V=\(\displaystyle R^2\)
u=(x1,-x1)
v=(x2,-x2)
u+v = (x1+x2,-x1-x2) = (x1+x2,-(x1+x2))
u+v E S
\(\displaystyle \alpha .u = \ alpha (x1,-x1) = ( \alpha x1,- \alpha x2 )\)
\(\displaystyle \alpha . u\) E S
Therefore, S is a vector subspace of V
2) S={(x,y,z)/y=z^2} V=R^3
u=(z1^2,y1,z1)
v=(z2^2,y2,z2)
u+v=
....
(z1^2+z2^2,y1+y2,z1+z2)
u+v Not E S
\(\displaystyle \alpha . u =\)
....
\(\displaystyle ( \alphaz1^2, \alpha y1, \alpha z1)\)
Not E S