Given a [FONT=MathJax_Math-italic]n[FONT=MathJax_Main]×[/FONT][FONT=MathJax_Math-italic]n[/FONT]n×n[/FONT] matrix whose [FONT=MathJax_Main]([FONT=MathJax_Math-italic]i[/FONT][FONT=MathJax_Main],[/FONT][FONT=MathJax_Math-italic]j[/FONT][FONT=MathJax_Main])[/FONT][/FONT]-th entry is i or j, whichever smaller, eg.
\begin{pmatrix}1 & 1 & 1 & 1\\
1 & 2 & 2 & 2 \\
1 & 2 & 3 & 3\\
1 & 2 & 3 & 4 \end{pmatrix}
The determinant of any such matrix is 1.
How do I prove this? Tried induction but the assumption would only help me to compute the term for [FONT=MathJax_Math-italic]A[FONT=MathJax_Math-italic]n[/FONT][FONT=MathJax_Math-italic]n[/FONT][/FONT] mirror.
\begin{pmatrix}1 & 1 & 1 & 1\\
1 & 2 & 2 & 2 \\
1 & 2 & 3 & 3\\
1 & 2 & 3 & 4 \end{pmatrix}
The determinant of any such matrix is 1.
How do I prove this? Tried induction but the assumption would only help me to compute the term for [FONT=MathJax_Math-italic]A[FONT=MathJax_Math-italic]n[/FONT][FONT=MathJax_Math-italic]n[/FONT][/FONT] mirror.