Just want to know if I'm doing the follwing derivitive right here.
\(\displaystyle \
\L\begin{array}{l}
f(x) = (\sin ^2 x + \sin x^2 )(x^3 + \cos (3x)) \\
f'(x) = (2\sin x(\cos x) + \cos x^2 (2x))(x^3 + \cos (3x)) + (\sin ^2 x + \sin x^2 )(3x^2 - \sin (3x)(3)) \\
\end{array}
\
\\)
f'(x) does not have to be simplified.
\(\displaystyle \
\L\begin{array}{l}
f(x) = (\sin ^2 x + \sin x^2 )(x^3 + \cos (3x)) \\
f'(x) = (2\sin x(\cos x) + \cos x^2 (2x))(x^3 + \cos (3x)) + (\sin ^2 x + \sin x^2 )(3x^2 - \sin (3x)(3)) \\
\end{array}
\
\\)
f'(x) does not have to be simplified.