derive [differentiate y = (-2x^2 + 5x - 1) / (2x - 1)]

Noahb

New member
Joined
Apr 15, 2006
Messages
3
derive: y=(-2x^2+5x-1)/(2x-1)

i tried derving it and my answer is f'x=(-4x^2+4x-3)/(2x-1)^2
but the answer is
f'x=-1-(2/(2x-1)^2)
how can i get this ?
please help.
thank you
 
Your answer is correct and equivalent to the given answer.
Expand your denominator and divide it out.
You will see how it works.
 
y=2x2+5x12x1\displaystyle y=\frac{-2x^2+5x-1}{2x-1}

y=(2x1)(4x+5)(2x2+5x1)(2)(2x1)2\displaystyle y'=\frac{(2x-1)(-4x+5)-(-2x^2+5x-1)(2)}{(2x-1)^2}

y=(8x2+14x5)(4x2+10x2)(2x1)2\displaystyle y'=\frac{(-8x^2+14x-5)-(-4x^2+10x-2)}{(2x-1)^2}

y=4x2+4x3(2x1)2\displaystyle y'=\frac{-4x^2+4x-3}{(2x-1)^2}

y=(4x24x+3)(2x1)2\displaystyle y'=\frac{-(4x^2-4x+3)}{(2x-1)^2}

y=(4x24x+1)2(2x1)2\displaystyle y'=\frac{-(4x^2-4x+1)-2}{(2x-1)^2}

y=(2x1)22(2x1)2\displaystyle y'=\frac{-(2x-1)^2-2}{(2x-1)^2}

y=(2x1)2(2x1)22(2x1)2\displaystyle y'=\frac{-(2x-1)^2}{(2x-1)^2} - \frac{2}{(2x-1)^2}

y=12(2x1)2\displaystyle y'=-1-\frac{2}{(2x-1)^2}
 
You 'derive' equations in physics.

You 'differentiate' functions in calculus.

do not mix up the two, they are not interchangable.
 
Top