Derivatives

Violagirl

Junior Member
Joined
Mar 9, 2008
Messages
87
I'm reviewing for a Calc test and am stuck on this last problem.

If x tan theta=100 and dx/dt=8, find dTheta/dt when x=-2 and theta=pi/3.
 
Given: xtan(θ) = 100, dxdt = 8\displaystyle Given: \ xtan(\theta) \ = \ 100, \ \frac{dx}{dt} \ = \ 8

Find dθdt when x = 2 and θ = π3.\displaystyle Find \ \frac{d \theta}{dt} \ when \ x \ = \ 2 \ and \ \theta \ = \ \frac{\pi}{3}.

dxdttan(θ)+xsec2(θ)dθdt = 0\displaystyle \frac{dx}{dt}tan(\theta)+xsec^{2}(\theta)\frac{d \theta}{dt} \ = \ 0

8tan(π3)+2sec2(π3)dθdt = 0\displaystyle 8tan(\frac{\pi}{3})+2sec^{2}(\frac{\pi}{3}) \frac{d \theta}{dt} \ = \ 0

83+8dθdt = 0\displaystyle 8\sqrt3+8\frac{d \theta}{dt} \ = \ 0

Hence, dθdt = 838 = 3\displaystyle Hence, \ \frac{d \theta}{dt} \ = \ \frac{-8\sqrt3}{8} \ = \ -\sqrt3
 
Top