G'day, Dazed.
We have
. . \(\displaystyle \L y = \frac{114.44}{1 \, + \, 0.0383e^{1.05x}}\)
The quotient rule would give
. . \(\displaystyle \L \begin{align*}
\\
\\
\\
y' &= \frac{(0)(1 + 0.0383e^{1.05x}) - (0.040215e^{1.05x})(114.44)}{(1 + 0.0383e^{1.05x})^2} \\
\\
\\
\\
\\
&= \frac{- 114.44(0.040215e^{1.05x})}{(1 + 0.0383e^{1.05x})^2} \\
\end{align*}\)
Alternatively we could apply the chain rule to
. . . \(\displaystyle \L
\\
\\
\\
y = 114.44(1 \, + \, 0.0383e^{1.05x})^{-1}\)
To get
. . \(\displaystyle \L \begin{align*}
\\
\\
\\
y' &= -114.44(1 \, + \, 0.0383e^{1.05x})^{-2} \cdot (0.040215e^{1.05x}) \\
\\
\\
\\
\\
&= \frac{- 114.44(0.040215e^{1.05x})}{(1 + 0.0383e^{1.05x})^2} \\
\end{align*}\)